Evidence of astrogliosis in rat hippocampus after d-amphetamine exposure.

Prog Neuropsychopharmacol Biol Psychiatry

Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.

Published: September 2006

Introduction: Psychostimulants such as amphetamine (AMPH) induce manic-like symptoms in humans and studies have suggested that bipolar disorder (BD) may be associated to dopamine dysfunction. Glial fibrillary acidic protein (GFAP) up-regulation is considered a marker of astrogliosis, and it has been associated to behavioral sensitization.

Purpose: We aimed to investigate the behavioral effects of acute and chronic AMPH on rat locomotion and assess GFAP levels in rat cortex and hippocampus.

Methods: Rats were administered either acute (single dose) or chronic (seven days) d-amphetamine IP injection. Locomotion was assessed with an open-field test and GFAP immunoquantity was measured using ELISA.

Results: Chronic, but not acute, administration of AMPH increased GFAP levels in rat hippocampus. No differences were observed in rat cortex.

Conclusions: Repeated exposure to AMPH leads to an astroglial response in the hippocampus of rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2006.03.016DOI Listing

Publication Analysis

Top Keywords

rat hippocampus
8
gfap levels
8
levels rat
8
rat
5
evidence astrogliosis
4
astrogliosis rat
4
hippocampus d-amphetamine
4
d-amphetamine exposure
4
exposure introduction
4
introduction psychostimulants
4

Similar Publications

Objectives: Sulforaphane (SFN), an isothiocyanate in cruciferous plants, has been reported to be effective in treating central nervous system diseases. However, how SFN protects the central nervous system needs further study. The aim of this study was to investigate the neuroprotective effect of SFN and its possible mechanism of action.

View Article and Find Full Text PDF

Elevated GABAergic neurotransmission prevents chronic intermittent ethanol induced hyperexcitability of intrinsic and extrinsic inputs to the ventral subiculum of female rats.

Neurobiol Stress

January 2025

Department of Translational Neuroscience, Wake Forest University, School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.

With the recent rise in the rate of alcohol use disorder (AUD) in women, the historical gap between men and women living with this condition is narrowing. While there are many commonalities in how men and women are impacted by AUD, an accumulating body of evidence is revealing sex-dependent adaptations that may require distinct therapeutic approaches. Preclinical rodent studies are beginning to shed light on sex differences in the effects of chronic alcohol exposure on synaptic activity in a number of brain regions.

View Article and Find Full Text PDF

Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.

View Article and Find Full Text PDF

Age-dependent increase in apoptosis is associated with dysregulation of miR-92a/Akt/mTOR and NF-κB signaling pathways in male rats.

Neurosci Lett

January 2025

Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address:

Brain aging is the leading risk factor for most neurodegenerative diseases and has been linked with high rates of neuron loss. Thus, identifying molecular mechanisms underlying neuron loss and pharmacological modulation may be of great importance for slowing or preventing age-related diseases. Herein, we investigated the roles of miR-92a, Akt, mTOR, and NF-κB in age-associated apoptosis in the hippocampus (a critical structure involved in brain aging) of male rats alone and in combination with prazosin.

View Article and Find Full Text PDF

Methamphetamine inhibits huntingtin-associated protein 1-mediated tyrosine receptor kinase B endocytosis resulting the neuroprotective dysfunction of brain-derived neurotrophic factor.

Toxicology

January 2025

School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China. Electronic address:

Methamphetamine (METH), a synthetic stimulant, has seen an escalating abuse situation globally over the past decade. Although the molecular mechanism underlying METH-induced neurotoxicity has been explored, the dysfunction of brain-derived neurotrophic factor (BDNF) neuroprotection in the context of METH neurotoxicity remains insufficiently understood. Our previous studies have found that METH induced neurotoxicity and BDNF expression in rat primary neurons, necessitating further research into this paradox.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!