Oligonucleotide agents (ODN) are emerging as attractive alternatives to chemical drugs. However, the clinical use of ODNs as therapeutics has been hindered by their susceptibility to degradation by cellular enzymes and their limited ability to penetrate intact cells. We have used various liposome-mediated transfection agents, for the in vitro delivery of DNA thioaptamers into U373-MAGI-CCR5 cells. Our lead thioaptamer, R12-2, targets the RNase H domain of the HIV-1 reverse transcriptase (RT) and inhibits viral infection in U373-MAGI-CCR5 cells. R12-2, a 62-base-pair, double-stranded DNA molecule with a monothio-phosphate modified backbone, was selected through a novel combinatorial selection method. We studied the use of oligofectamine (OF), TFX-20, Transmessenger (TM), and Gene Jammer (GJ) for transfection of the thio-modified DNA aptamers. OF-transfected U373-MAGI-CCR5 cells resulted in 68% inhibition of HIV infection in the treated cells compared to the untreated control. Inhibition was observed in a dose-dependent manner with maximal inhibition of 83%. In this report, we demonstrate that monothioate-modified DNA duplex oligonucleotides can be efficiently delivered into cells by liposome-based transfection agents to inhibit HIV replication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2006.03.201 | DOI Listing |
Virol J
November 2007
Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA.
Background: Several subtypes of HIV-1 circulate in infected people worldwide, including subtype B in the United States and subtype C in Africa and India. To understand the biological properties of HIV-1 subtype C, including cellular tropism, virus entry, replication efficiency and cytopathic effects, we reciprocally inserted our previously characterized envelope V3-V5 regions derived from 9 subtype C infected patients from India into a subtype B molecular clone, pNL4-3. Equal amounts of the chimeric viruses were used to infect T-lymphocyte cell lines (A3.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2006
Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
Oligonucleotide agents (ODN) are emerging as attractive alternatives to chemical drugs. However, the clinical use of ODNs as therapeutics has been hindered by their susceptibility to degradation by cellular enzymes and their limited ability to penetrate intact cells. We have used various liposome-mediated transfection agents, for the in vitro delivery of DNA thioaptamers into U373-MAGI-CCR5 cells.
View Article and Find Full Text PDFBioconjug Chem
November 2004
Department of Biochemistry and Molecular Biology H171, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA.
Multivalent neoglycoconjugates are valuable tools for studying carbohydrate-protein interactions. To study the interaction of HIV-1 gp120 with its reported alternate glycolipid receptors, galactosyl ceramide (GalCer) and sulfatide, galactose- and sulfated galactose-derivatized dendrimers were synthesized, analyzed as ligands for rgp120 by surface plasmon resonance, and tested for their ability to inhibit HIV-1 infection of CXCR4- and CCR5-expressing indicator cells. Four different series of glycodendrimers were made by amine coupling spacer-arm derivatized galactose residues, either sulfated or nonsulfated, to poly(propylenimine) dendrimers, generations 1-5.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
October 2000
Departments of Neurology and Microbiology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
The objective of this study was to determine whether reverse transcriptase inhibitors (RTIs) could decrease viral replication in microglia. Human microglia obtained from individuals undergoing temporal lobectomy were cultured and infected with HIV-1 isolates from the central nervous system (CNS) as previously described (Strizki JM, et al. J Virol 1996;70:7654-7662).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!