The transient receptor potential vanilloid 1 (TRPV1) receptor is a ligand-gated cation channel that can be activated by capsaicin, heat, protons and cytosolic lipids. We compared activation of recombinant human TRPV1 receptors stably expressed in human 293 cells, derived from kidney embryonic cells, and in human 1321N1 cells, derived from brain astrocytes. Cellular influx of calcium was measured in response to acid, endovanilloids (N-arachidonoyl-dopamine, N-oleoyl-dopamine and anandamide), capsaicin and other traditional vanilloid agonists under normal (pH 7.4) and acidic (pH 6.7 and 6.0) assay conditions. The host cell expression system altered the agonist profile of endogenous TRPV1 receptor agonists without affecting the pharmacological profile of either exogenous TRPV1 receptor agonists or antagonists. Our data signify that the host cell expression system plays a modulatory role in TRPV1 receptor activity, and suggests that activation of native human TRPV1 receptors in vivo will be dependent on cell-specific regulatory factors/pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2006.03.003 | DOI Listing |
Life (Basel)
December 2024
College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
Background: Fibromyalgia (FM) is characterized by chronic pain, significantly affecting the quality of life and functional capabilities of patients. In addition to pain, patients may experience insomnia, chronic fatigue, depression, anxiety, and headaches, further complicating their overall well-being. The Transient Receptor Potential Vanilloid 1 (TRPV1) receptor responds to various noxious stimuli and plays a key role in regulating pain sensitivity and inflammation.
View Article and Find Full Text PDFInt J Radiat Biol
December 2024
Department of Radiation Biotechnology, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.
Purpose: The present study was carried out to evaluate the radioprotective activities of N-acetyl-L-tryptophan (L-NAT) using rodent and non-human primate (NHP) models.
Materials And Methods: The antagonistic effect of L-NAT on the Transient receptor potential vanilloid-1 (TRPV1) receptor and substance P inhibition was determined using molecular docking and Elisa assays. The in radioprotective activity of L-NAT was evaluated using whole-body survival assays in mice and NHPs.
Neuroscience
January 2025
Shengjing Hospital of China Medical University, China. Electronic address:
Transient receptor vanillin 1 (TRPV1) is widely expressed in the neural axis and surrounding tissues, and is easily activated by harmful stimuli such as pain and inflammatory responses. Previous studies have shown that activated TRPV1 channels regulate all levels of nervous system activity by improving calcium influx and modulating nervous system excitability. Recent studies have suggested that TRPV1 activation in the peripheral nervous system may induce sleep disorders, while activation in the central nervous system may ameliorate sleep disorders and assist memory consolidation processes.
View Article and Find Full Text PDFCells
November 2024
CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
Food Funct
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
Irritable bowel syndrome (IBS) is a common intestinal disease characterized by abdominal pain, abdominal distension and irregular defecation frequency, and it has had a high incidence and low cure rate in recent years. Visceral hypersensitivity (VH) is one of the main physiological indicators of IBS, and TRPV1 and TRPM8 (transient receptor potential vanilloid 1 and melastatin 8) play crucial roles in VH and are widely distributed in the intestine, significantly impacting abdominal pain in IBS patients. Under the guidance of PRISMA, four databases were systematically searched at the outset, including PubMed, Web of Science, Embase, and Cochrane Library.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!