Inheritance and state switching of genetic toggle switch in different culture growth phases.

FEMS Microbiol Lett

Department of Physic-Chemical Biology and Epigenetics, Institute of Biology, Ufa Research Center, Russian Academy of Sciences, Ufa, Russia.

Published: May 2006

Using the gene engineering methods, one can construct simple artificial gene networks with two stable functioning regimes (bistable genetic systems). Such genetic systems make it possible for cells with identical genotype to inherit two alternative phenotypes. The toggle switch is just one of the types of bistable genetic systems. In this work, we investigate the inheritance and switching of toggle switch functioning regimes in the cells at different culture growth phases. It is shown that during transition into the stationary growth phase the inheritance of stable states is disturbed and variations in the toggle-switching rate are more possible in different cells. Also, simultaneous expression of two genes of the system has been experimentally modelled. According to our results, the culture growth phase in this period determines later on the ratio between cell phenotypes in a population.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2006.00194.xDOI Listing

Publication Analysis

Top Keywords

toggle switch
12
culture growth
12
genetic systems
12
growth phases
8
functioning regimes
8
bistable genetic
8
growth phase
8
inheritance state
4
state switching
4
genetic
4

Similar Publications

Essential genes, estimated at approximately 20% of the genome, are broadly expressed and required for reproductive success. They are difficult to study, as interfering with their function leads to premature death. Transcription is one of the essential functions of life, and the multi-protein Mediator complex coordinates the regulation of gene expression at nearly every eukaryotic promoter.

View Article and Find Full Text PDF

The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants.

View Article and Find Full Text PDF

Objective: While myoelectric control has been commercialized in prosthetics for decades, its adoption for more general human-machine interaction has been slow. Although high accuracies can be achieved across many gestures, current control approaches are prone to false activations in real-world conditions. This is because the same electromyogram (EMG) signals generated during the elicitation of gestures are also naturally activated when performing activities of daily living (ADLs), such as when driving to work or while typing on a keyboard.

View Article and Find Full Text PDF

Exploiting F NMR in a Multiplexed Assay for Small GTPase Activity.

J Am Chem Soc

January 2025

Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States.

Small GTPases (smG) are a 150-member family of proteins, comprising five subfamilies: Ras, Rho, Arf, Rab, and Ran-GTPases. These proteins function as molecular switches, toggling between two distinct nucleotide-bound states. Using traditional multidimensional heteronuclear NMR, even for single smGs, numerous experiments, high protein concentrations, expensive isotope labeling, and long analysis times are necessary.

View Article and Find Full Text PDF

It has been challenging to determine how a ligand that binds to a receptor activates downstream signaling pathways and to predict the strength of signaling. The challenge is compounded by functional selectivity, in which a single ligand binding to a single receptor can activate multiple signaling pathways at different levels. Spectroscopic studies show that in the largest class of cell surface receptors, 7 transmembrane receptors (7TMRs), activation is associated with ligand-induced shifts in the equilibria of intracellular pocket conformations in the absence of transducer proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!