Double-stranded RNA (dsRNA) plays a major role in RNA interference (RNAi), a process in which segments of dsRNA are initially cleaved by the Dicer into shorter segments (21-23 nt) called small interfering RNA (siRNA). These siRNA then specifically target homologous mRNA molecules causing them to be degraded by cellular ribonucleases. RNAi down regulates endogenous gene expression in mammalian cells. Vascular endothelial growth factor (VEGF) is a key molecule in vasculogenesis as well as in angiogenesis. Tumor growth is an angiogenesis-dependent process, and therapeutic strategies aimed at inhibiting angiogenesis are theoretically attractive. To investigate the feasibility of using siRNA for VEGF in the specific knockdown of VEGF mRNA, thereby inhibiting angiogenesis, we have performed experiments with a DNA vector based on a siRNA system that targets VEGF (siVEGF). It almost completely inhibited the expression of three different isoforms (VEGF120, VEGF164 and VEGF188) of VEGF mRNA and the secretion of VEGF protein in mouse squamous cell carcinoma NRS-1 cells. The siVEGF released from cationized gelatin microspheres suppressed tumor growth in vivo. A marked reduction in vascularity accompanied the inhibition of a siVEGF-transfected tumor. Fluorescent microscopic study showed that the complex of siVEGF with cationized gelatin microspheres was still present around the tumor 10 days after injection, while free siVEGF had vanished by that time. siVEGF gene therapy increased the fraction of vessels covered by pericytes and induced expression of angiopoietin-1 by pericytes. These data suggest that cationized-gelatin microspheres containing siVEGF can be used to normalize tumor vasculature and inhibit tumor growth in a NRS-1 squamous cell carcinoma xenograft model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159315PMC
http://dx.doi.org/10.1111/j.1349-7006.2006.00174.xDOI Listing

Publication Analysis

Top Keywords

cationized gelatin
12
squamous cell
12
cell carcinoma
12
tumor growth
12
inhibiting angiogenesis
8
vegf mrna
8
gelatin microspheres
8
vegf
7
tumor
6
sivegf
6

Similar Publications

Hybrid hydrogels are promising for wound dressing, tissue engineering, and drug delivery due to their exceptional biocompatibility and mechanical stability. This study synthesized hybrid hydrogels for photodynamic therapy using electron beam-initiated polymerization with varying PEGDA/gelatin ratios and irradiation doses to evaluate their effectiveness as uptake and release systems for five photosensitizers. Toluidine blue, O (TBO); methylene blue (MB); eosin, Y; indocyanine, green; and sodium meso-tetraphenylporphine-4,4',4″,4‴-tetrasulfonate were studied for their uptake and release dynamics in relation to their structural properties and the hydrogels' composition.

View Article and Find Full Text PDF

Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model.

J Biomed Mater Res A

January 2025

Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China.

Tendinopathy is a disorder characterized by pain and reduced function due to a series of changes in injured or diseased tendons. Inflammation and collagen degeneration are key contributors to the onset and chronic nature of tendinopathy. Acetyl-11-keto-β-boswellic acid (AKBA) is an effective anti-inflammatory agent widely used in chronic inflammatory disorders and holds potential for tendinopathy treatment; however, its therapeutic efficacy is limited by poor aqueous solubility.

View Article and Find Full Text PDF

Association with Cationized Gelatin Nanospheres Enhances Mitochondria Uptake and Membrane Potential.

Tissue Eng Part A

December 2024

Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

The objective of this study is to investigate the influence of exogenous mitochondria (Mt) internalization on the Mt membrane potential of cells. Cationized gelatin nanospheres (cGNS) were prepared to mix Mt at different ratios to prepare Mt associated with cGNS (Mt-cGNS). The Mt internalization depended on the Mt/cGNS mixing ratio to achieve the maximum at the ratio of 3/1.

View Article and Find Full Text PDF

Strontium-Doped Whitlockite Scaffolds for Enhanced Bone Regeneration.

ACS Appl Mater Interfaces

December 2024

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.

Bone graft substitutes to repair critical-sized bone fractures have experienced significant development over the last few decades. Among them, whitlockite (WH)-based bone grafts have proven to be effective in mediating bone healing. In the current study, a next generation, nature-inspired scaffold was developed with strontium-functionalized whitlockite nanoparticles (nSrWH) to enhance the intrinsic properties of WH.

View Article and Find Full Text PDF

In this study, we designed novel self-healing hydrogels (CMC/DAQP-HGs) using carboxymethyl chitosan (CMC) and dialdehyde quaternized pullulan (DAQP), aimed at loading tranexamic acid (TA) for rapid hemostasis. Meanwhile, CMC/dialdehyde pullulan (DAP) hydrogels (CMC/DAP-HGs) were prepared for comparison with CMC/DAQP-HGs. Experimental results showed that (1) DAQP, DAP, CMC/DAQP-HGs, and CMC/DAP-HGs were successfully prepared; (2) both types of hydrogels demonstrated excellent swelling (swelling ratio of 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!