The wild-type Wilms' tumor gene WT1 is overexpressed in human primary leukemia and in a wide variety of solid cancers. All of the four WT1 isoforms are expressed in primary cancers and each is considered to have a different function. However, the functions of each of the WT1 isoforms in cancer cells remain unclear. The present study demonstrated that constitutive expression of the WT1 17AA(-)/KTS(-) isoform induces morphological changes characterized by a small-sized cell shape in TYK-nu.CP-r (TYK) ovarian cancer cells. In the WT1 17AA(-)/KTS(-) isoform-transduced TYK cells, cell-substratum adhesion was suppressed, and cell migration and in vitro invasion were enhanced compared to that in mock vector-transduced TYK cells. Constitutive expression of the WT1 17AA(-)/KTS(-) isoform also induced morphological changes in five (one gastric, one esophageal, two breast and one fibrosarcoma) of eight cancer cell lines examined. No WT1 isoforms other than the WT1 17AA(-)/KTS(-) isoform induced the phenotypic changes. A decrease in alpha-actinin 1 and cofilin expression and an increase in gelsolin expression were observed in WT1 17AA(-)/KTS(-) isoform-transduced TYK cells. In contrast, co-expression of alpha-actinin 1 and cofilin or knockdown of gelsolin expression by small interfering RNA restored WT1 17AA(-)/KTS(-) isoform-transduced TYK cells to a phenotype that was comparable to that of the parent TYK cells. These results indicated that the WT1 17AA(-)/KTS(-) isoform exerted its oncogenic functions through modulation of cytoskeletal dynamics. The present results may provide a novel insight into the signaling pathway of the WT1 gene for its oncogenic functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160036 | PMC |
http://dx.doi.org/10.1111/j.1349-7006.2006.00169.x | DOI Listing |
Int J Breast Cancer
November 2021
Department of Immunology and Virology, Faculty of Biological Sciences, Autonomous University of Nuevo Leon (UANL), San Nicolas de los Garza, Nuevo Leon 66450, Mexico.
Background: The gene codes for a transcription factor that presents several protein isoforms with diverse biological properties, capable of positively and negatively regulating genes involved in proliferation, differentiation, and apoptosis. WT1 protein is overexpressed in more than 90% of breast cancer; however, its role during tumor progression is still unknown. .
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2017
Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; The Excellent Research Laboratory of Cancer Molecular Biology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand. Electronic address:
Triple negative breast cancer (TNBC) is highly aggressive and has a few therapeutic treatments, so new targeted therapy and biomarkers are required to provide alternative choices for treating TNBC patients. Recent studies showed that vasculogenic mimicry (VM), the formation of blood channels by aggressive cancer cells that mimic endothelial cells, is a factor contributing to poor prognosis in TNBC. Wilms' tumor 1 (WT1) gene has been found to be highly expressed in TNBC, and has 4 major distinct isoforms; isoform A (-17AA/-KTS; -/-), isoform B (+17AA/-KTS; +/-), isoform C (-17AA/+KTS; -/+) and isoform D (+17AA/+KTS; +/+).
View Article and Find Full Text PDFMol Carcinog
December 2015
Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan.
The Wilms' tumor gene WT1 is overexpressed in leukemia and various types of solid tumors and plays an oncogenic role in these malignancies. Alternative splicing at two sites yields four major isoforms, 17AA(+)KTS(+), 17AA(+)KTS(-), 17AA(-)KTS(+), and 17AA(-)KTS(-), and all the isoforms are expressed in the malignancies. However, among the four isoforms, function of WT1[17AA(-)KTS(+)] isoform still remains undetermined.
View Article and Find Full Text PDFTransl Oncol
October 2014
Department of Obstetrics and Gynecology, Yamagata University, School of Medicine, Yamagata, Japan.
The Wilms' tumor 1 gene WT1 encodes a zinc transcription factor involved in a variety of cancer-related processes. In this study, we sought to investigate the effects of WT1 splice variants on tumorigenic activity and survival in an in vivo ovarian cancer model. To this end, we established stable ovarian cancer cell lines transduced with lentiviral constructs containing each of the four WT1 splice variants (- 17AA/- KTS, + 17AA/- KTS, - 17AA/+ KTS, and + 17AA/+ KTS).
View Article and Find Full Text PDFLeuk Res
August 2014
State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China. Electronic address:
Wilms' tumor 1 (WT1) gene plays important roles in leukemogenesis. To further explore its underlying mechanisms, we transfected two WT1 isoforms, WT1(+17AA/-KTS) and WT1(+17AA/+KTS) into U937, a WT1-null monoblastic cell line, studied their effects on migration, colony formation, apoptosis, gene expression and pertinent signaling pathways of U937 cells. The results showed that WT1(+17AA/-KTS), but not WT1(+17AA/+KTS), enhanced migration and colony forming abilities of U937 cells, and suppressed etoposide-induced U937 cell apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!