Genetic and biochemical analysis of RNase Z in eukaryotes, such as Arabadopsis thaliana, and prokaryotes like Bacillus subtilis have demonstrated that this endoribonuclease is essential for the maturation of tRNA precursors that do not contain a chromosomally encoded CCA determinant. As all Escherichia coli tRNA transcripts have chromosomally encoded CCA determinants, the function of its putative RNase Z homologue, the product of the elaC gene, is not clear. Here we demonstrate that the E. coli ElaC protein (RNase Z) endonucleolytically processes B. subtilis tRNA precursors lacking a CCA determinant both in vivo and in vitro. More importantly, E. coli RNase Z plays a significant role in mRNA decay, a previously unidentified activity for the enzyme. The purified RNase Z protein cleaves the rpsT mRNA at locations distinct from those obtained with RNase E. As expected, under physiological conditions E. coli and B. subtilis tRNA precursors containing a CCA determinant are not substrates. These results suggest a potentially important new role for the RNase Z family of proteins in RNA metabolism, particularly in organisms lacking RNase E.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.2006.05124.x | DOI Listing |
EMBO J
January 2025
Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
Elongator is a tRNA-modifying complex that regulates protein translation. Recently, a moonlighting function of Elongator has been identified in regulating the polarization of the microtubule cytoskeleton during asymmetric cell division. Elongator induces symmetry breaking of the anaphase midzone by selectively stabilizing microtubules on one side of the spindle, contributing to the downstream polarized segregation of cell-fate determinants, and therefore to cell fate determination.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892.
Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.
CNS Neurosci Ther
December 2024
School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China.
Background: Neurological disorders known as neurodegenerative diseases (NDDs) result in the slow loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS), as well as the collapse of neural networks in terms of structure and function. NDDs are expected to surpass cancer as the second biggest cause of mortality by 2040, according to World Health Organization (WHO) estimations. Neurons cannot effectively regenerate themselves because they are terminally differentiated.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
Puromycin (Puro) is a natural aminonucleoside antibiotic that inhibits protein synthesis by its incorporation into elongating peptide chains. The unique mechanism of Puro finds diverse applications in molecular biology, including the selection of genetically engineered cell lines, in situ protein synthesis monitoring, and studying ribosome functions. However, the key step of Puro biosynthesis remains enigmatic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!