Recent experimental research to treat spinal cord injury (SCI) pain has greatly increased our understanding of how such chronic pain might be modulated in the human population. Neuropathic pain is caused by the structural and biochemical changes associated with the peripheral and central nervous system damage associated with nervous system trauma, often leading to an imbalance in endogenous excitatory and inhibitory spinal systems that modulate sensory processing. But current pharmacological therapies are often ineffective over time for the greater number of patients. Although there are a variety of useful surgical and pharmacologic interventions (including electric stimulation, implantable mechanical pumps and a myriad of drugs for pain relief) cell and molecular technologies are a new frontier in pain medicine. These other potential therapeutic agents of pain are based on current and developing treatment strategies elucidated from recent research, especially concerning central spinal sensitization, and the spinal mechanisms that are thought to be the origin and ongoing cause of chronic pain, even when the injury is peripheral in location. Newly developing translational strategies such as molecular agents, viral-mediated gene transfer or cellular transplants to treat chronic pain are being evaluated in a variety of peripheral and central injury models. They seek to address both the causes of neuropathic pain, to interfere with its development and maintenance over time, and give the injured person with pain an improved quality-of-life that allows them to better deal with the larger tasks of daily life and the strenuous rehabilitation that might also improve motor function after SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/neu.2006.23.549 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!