Objective: Diabetic nephropathy is a life-threatening complication of diabetes mellitus. Bioartificial pancreas transplantation is becoming a therapeutic option for diabetes mellitus as it protects both allogeneic and xenogeneic islets from the host immune system. This study was undertaken to determine the effectiveness of bioartificial pancreas transplantation to improve or prevent diabetic renal damage.
Methods: Approximately 800 rat islets were macroencapsulated in polyvinyl alcohol gel and then transplanted into the peritoneal cavity of diabetic mice (transplantation group [Tx group]). Diabetic mice transplanted with a capsule without islets served as a sham operation group. After transplantation, the following data were collected: survival, body weight, blood glucose, blood urea nitrogen, serum creatinine levels, urinalysis, water intake, and histological changes in the kidney.
Results: There was a significant improvement in survival, blood glucose, blood urea nitrogen, and creatinine in the Tx group compared with the sham operation group. No remarkable changes were seen in urinary parameters between the 2 groups, and there was also no significant difference in water intake. Histological examination revealed that mesangial matrix expansion was decreased in the Tx group.
Conclusions: This study demonstrated that polyvinyl alcohol gel bioartificial pancreas transplantation can protect the kidney from diabetic damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.mpa.0000203959.31877.8c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!