Structure of alcohol dehydrogenase from Entamoeba histolytica.

Acta Crystallogr D Biol Crystallogr

Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot 76100, Israel.

Published: May 2006

The structure of the apo form of alcohol dehydrogenase from a single-cell eukaryotic source, Entamoeba histolytica, has been determined at 1.8 A. To date, bacterial and archeal alcohol dehydrogenases, which are biologically active as tetramers, have crystallized with tetramers in the asymmetric unit. However, the current structure has one independent dimer per asymmetric unit and the full tetramer is generated by application of the crystallographic twofold symmetry element. This structure reveals that many of the crystallization and cryoprotection components, such as cacodylate, ethylene glycol, zinc ions and acetate, have been incorporated. These crystallization solution elements are found within the molecule and at the packing interfaces as an integral part of the three-dimensional arrangements of the tetramers. In addition, an unexpected modification of aspartic acid to O-carboxysulfanyl-4-oxo-L-homoserine was found at residue 245.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0907444906009292DOI Listing

Publication Analysis

Top Keywords

alcohol dehydrogenase
8
entamoeba histolytica
8
asymmetric unit
8
structure
4
structure alcohol
4
dehydrogenase entamoeba
4
histolytica structure
4
structure apo
4
apo form
4
form alcohol
4

Similar Publications

Artificial cell-free system for the sustainable production of acetoin from bioethanol.

Bioresour Technol

January 2025

Department of Chemical, Biological and Environmental Engineering, Engineering School, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain. Electronic address:

The present work introduces and validates an artificial cell free system for the synthesis of acetoin from ethanol, representing a greener alternative to conventional chemical synthesis. The one pot multi-enzymatic system, which employs pyruvate decarboxylase from Zymobacter palmae (ZpPDC), alcohol dehydrogenase from Saccharomyces cerevisiae (ScADH), and NADH oxidase from Streptococcus pyogenes (SpNOX), achieves nearly 100 % substrate conversion and reaction yield within 6 h under optimal conditions (pH 7.5, enzyme activities: ZpPDC 100 U·mL, ScADH 50 U·mL, SpNOX 127 U·mL, and 1 mM NAD).

View Article and Find Full Text PDF

Background: Caffeic acid phenethyl ester (CAPE) is the main bioactive component of poplar type propolis. We previously reported that treatment with caffeic acid phenethyl ester (CAPE) suppressed the cell proliferation, tumor growth, as well as migration and invasion of prostate cancer (PCa) cells via inhibition of signaling pathways of AKT, c-Myc, Wnt and EGFR. We also demonstrated that combined treatment of CAPE and docetaxel altered the genes involved in glycolysis and tricarboxylic acid (TCA) cycle.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) have emerged as promising solvents for biocatalysis. While their impact on enzyme solvation and stabilization has been studied for several enzyme classes, their role in substrate binding is yet to be investigated. Herein, molecular dynamics (MD) simulations of horse-liver alcohol dehydrogenase (HLADH) are performed in choline chloride-ethylene glycol (ChCl-EG) and choline chloride-glycerol (ChCl-Gly) at varying water concentrations.

View Article and Find Full Text PDF

China is a major producer of pears in the world and anthracnose is the most important disease, which may include fruit rot and early defoliation, and further brings enormous economic losses. In August of 2023, a sudden outbreak of anthracnose disease, ranging from 70% to 90% disease incidence, occurred on fruits of Pyrus pyrifolia (Burm.f.

View Article and Find Full Text PDF

New Insights into the Pathogenesis of Alcoholic Liver Disease Based on Global Research.

Dig Dis Sci

January 2025

Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China.

Background And Aims: Alcoholic liver disease (ALD) is the leading cause of death among alcohol-related diseases, yet its pathogenesis remains incompletely understood. This article employs data mining methods to conduct an indepth study of articles on ALD published in the past three decades, aiming to elucidate the pathogenesis of ALD.

Methods: Firstly, articles related to the pathogenesis of ALD were retrieved from the Web of Science (WOS) database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!