Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Much is now understood concerning the synthesis of prenylated and palmitoylated proteins, but what is known of their metabolic fate? This review details metabolic pathways for the lysosomal degradation of S-fatty acylated and prenylated proteins. Central to these pathways are two lysosomal enzymes, palmitoyl-protein thioesterase (PPT1) and prenylcysteine lyase (PCL). PPT1 is a soluble lipase that cleaves fatty acids from cysteine residues in proteins during lysosomal protein degradation. Notably, deficiency in the enzyme causes a neurodegenerative lysosomal storage disorder, infantile neuronal ceroid lipofuscinosis. PCL is a membrane-associated flavin-containing lysosomal monooxygenase that metabolizes prenylcysteine to prenyl aldehyde through a completely novel mechanism. The eventual metabolic fates of other lipidated proteins (such as glycosylphosphatidylinositol-anchored and N-myristoylated proteins) are poorly understood, suggesting directions for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1194/jlr.R600010-JLR200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!