Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Calcium transients are known to control several transition points in the eukaryotic cell cycle. For example, we have previously shown that a coordinate elevation in the intracellular free calcium ion concentration is required for G1- to S-phase cell cycle progression in vascular smooth muscle cells (VSMC). However, the molecular basis for this Ca2+ sensitivity was not known. Using buffers with differing [Ca2+], we found that the kinase activity of mouse and human cyclin E/CDK2, but not other G1/S-associated cell cycle complexes, was responsive to physiological changes in [Ca2+]. We next determined that this Ca2+-responsive kinase activity was dependent on a direct interaction between calmodulin (CaM), one of the major Ca2+-signal transducers of eukaryotic cells, and cyclin E. Pharmacological inhibition of CaM abrogated the Ca2+ sensitivity of cyclin E/CDK2 and retarded mouse VSMC proliferation by causing G1 arrest. We next defined the presence of a highly conserved 22 amino acid N-terminal CaM-binding motif in mammalian cyclin E genes (dissociation constant, 1.5+/-0.1 micromol/L) and showed its essential role in mediating Ca2+-sensitive kinase activity of cyclin E/CDK2. Mutant human cyclin E protein, lacking this CaM-binding motif, was incapable of binding CaM or responding to [Ca2+]. Taken together, these findings reveal CaM-dependent cyclin E/CDK2 activity as a mediator of the known Ca2+ sensitivity of the G1/S transition of VSMC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.RES.0000223059.19250.91 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!