AI Article Synopsis

  • CNBP deficiency in mouse embryos leads to forebrain truncation due to improper morphogenetic movements in the anterior visceral endoderm during early development.
  • CNBP is also expressed in early chick embryos, indicating a similar role in forebrain development.
  • Silencing CNBP results in reduced expression of key transcription factors (BF-1, Six3, and Hesx1) while misexpressing CNBP can induce their expression, highlighting its critical regulatory role in forebrain formation during organogenesis.

Article Abstract

We recently demonstrated that Cellular Nucleic acid Binding Protein (CNBP)(-/-) mouse embryos exhibit forebrain truncation due to a lack of proper morphogenetic movements of the anterior visceral endoderm (AVE) during pre-gastrulation stage (Chen, W., Liang, Y., Deng, W., Shimizu, K., Ashique, A.M., Li, E., Li, Y.P., 2003. The zinc-finger protein CNBP is required for forebrain formation in the mouse, Development 130, 1367-1379). However, CNBP expression pattern in the mouse forebrain suggests that CNBP may have more direct effects during forebrain development. Our data show that CNBP is expressed in tissues of early chick embryo that are the equivalent to the mouse embryo. Using a combination of RNAi-silencing and Retrovirus-misexpression approaches, we investigated the temporal function of CNBP in the specification/development of the chick forebrain during organogenesis. The silencing of CNBP expression resulted in forebrain truncation and the absence of BF-1, Six3 and Hesx1 expression, but not Otx2 in chick embryos. Misexpression of CNBP induced the expression of BF-1, Six3 and Hesx1 in the hindbrain, but not the expression of Otx2. These results offer novel insights into the function of CNBP during organogenesis as the regulator of forebrain formation and a number of rostral head transcription factors. Moreover, CNBP and Otx2 may play roles as regulators of forebrain formation in two parallel pathways. These new insights into CNBP functions underscore the essential role of CNBP in forebrain formation during chick embryo organogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2006.03.012DOI Listing

Publication Analysis

Top Keywords

forebrain formation
20
cnbp
12
forebrain
10
chick embryos
8
forebrain truncation
8
cnbp expression
8
chick embryo
8
function cnbp
8
bf-1 six3
8
six3 hesx1
8

Similar Publications

Tau phosphorylation suppresses oxidative stress-induced mitophagy via FKBP8 receptor modulation.

PLoS One

January 2025

Department of Anesthesiology & Perioperative Medicine, University of Rochester, Rochester, New York, United States of America.

Neurodegenerative diseases are often characterized by mitochondrial dysfunction. In Alzheimer's disease, abnormal tau phosphorylation disrupts mitophagy, a quality control process through which damaged organelles are selectively removed from the mitochondrial network. The precise mechanism through which this occurs remains unclear.

View Article and Find Full Text PDF

Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model.

Neuromolecular Med

December 2024

Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.

Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.

View Article and Find Full Text PDF

To study the neuronal protective effect and its potential mechanism of C16 against gp120-induced cognitive impairment in vitro and in vivo. The NORT method was used to evaluate the short-term memory abilities of rats, the morphological changes in hippocampus were observed by Nissl staining. Cell viability and damage degree were detected by MTT and LDH.

View Article and Find Full Text PDF

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Neohesperidin Improves Depressive-Like Behavior Induced by Chronic Unpredictable Mild Stress in Mice.

Neurochem Res

January 2025

Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.

Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!