Aim: To determine the cardioprotective action of ghrelin and des-octanoyl ghrelin in rats with isoproterenol-induced myocardial injury.

Methods: Rats were subcutaneously injected with isoproterenol (ISO; 20, 10, and 5 mg/kg) on d 1, 2 and 3, respectively, and then 3 mg/kg for the next 7 d with or without ghrelin or des-octanoyl-ghrelin (100 microg/kg, twice daily). Plasma ghrelin and growth hormone levels were assayed using radioimmunoassay methods. Growth hormone secretagogue receptor (GHSR) and ghrelin mRNA were determined using RT-PCR. The maximal binding capacity and the affinity for [3H]ghrelin were determined by receptor binding assays.

Results: Compared with controls, ISO-treated rats showed severe myocardial injury, cardiomegaly, infarction-like necrosis and massive fibrosis with increases in irradiated-ghrelin (ir-ghrelin) content in plasma by 67% and myocardia by 66% and in the mRNA level in the myocardia by 93% (P<0.01). ISO-treated rats had 95% (P<0.01) higher GHSR mRNA levels in the myocardia. The maximal binding capacity of [3H]ghrelin for myocardial sarcolemma was higher in ISO-treated rats than in controls. Ghrelin administration improved cardiac function and ameliorated cardiomegaly and attenuated myocardial lipid peroxidation injury and relieved cardiac fibrosis as compared with ISO treatment alone. Administration of des-octanoyl ghrelin effectively antagonized ISO-induced myocardial injury and improved all parameters measured. However, the therapeutic effect of des-octanoyl ghrelin was significantly weaker than that of ghrelin. The plasma growth hormone level increased markedly, by 1.5-fold (P<0.01), with ghrelin administration as compared with that in controls, but was unaltered in des-octanoyl ghrelin group.

Conclusion: Myocardial ghrelin and GHSR were up-regulated during ISO-induced myocardial injury. The protective effect of ghrelin against ISO-induced cardiac function injury and fibrosis was more potent than that of des-octanoyl ghrelin, which suggests that ghrelin could be an endogenous cardioprotective factor in ischemic heart disease, and that its effects include growth hormone-dependent and -independent pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-7254.2006.00319.xDOI Listing

Publication Analysis

Top Keywords

ghrelin des-octanoyl
8
des-octanoyl ghrelin
8
myocardial injury
8
growth hormone
8
ghrelin
7
cardioprotective effects
4
effects ghrelin
4
ghrelin myocardial
4
injury induced
4
induced isoproterenol
4

Similar Publications

The orexigenic peptide ghrelin (Ghr) stimulates hunger signals in the hypothalamus via growth hormone secretagogue receptor (GHS-R1a). Gastric Ghr is synthetized as a preprohormone which is proteolytically cleaved, and acylated by a membrane-bound acyl transferase (MBOAT). Circulating Ghr is reduced in cholestatic injuries, however Ghr's role in cholestasis is poorly understood.

View Article and Find Full Text PDF

Targeting microbubbles-carrying TGFβ1 inhibitor combined with ultrasound sonication induce BBB/BTB disruption to enhance nanomedicine treatment for brain tumors.

J Control Release

August 2015

Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan. Electronic address:

The clinical application of chemotherapy for brain cancer tumors remains a challenge due to difficulties in the transport of therapeutic agents across the blood-brain barrier/blood-tumor barrier (BBB/BTB). In this study, we developed des-octanoyl ghrelin-conjugated microbubbles (GMB) loaded with TGFβ1 inhibitor (LY364947) (GMBL) to induce BBB/BTB disruption for ultrasound (US) sonication with GMBL. The in-vitro stability study showed that GMB was pretty stable over one month.

View Article and Find Full Text PDF

Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system.

Biomaterials

April 2014

Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan. Electronic address:

Chemotherapy for brain cancer tumors remains a big challenge for clinical medicine due to the inability to transport sufficient drug across the blood-brain barrier (BBB) and the poor penetration of drug into the tumors. To effectively treat brain tumors and reduce side effects on normal tissues, both des-octanoyl ghrelin and folate conjugated with polymersomal doxorubicin (GFP-D) was developed in this study to help transport across the BBB and target the tumor as well. The size measurements revealed that this BBB-penetrating cancer cell-targeting GFP-D was about 85 nm.

View Article and Find Full Text PDF

Polymersomes conjugated with des-octanoyl ghrelin for the delivery of therapeutic and imaging agents into brain tissues.

Biomaterials

February 2014

Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan. Electronic address:

The effective protection of the blood-brain barrier (BBB) from tight junctions and efflux transport systems ultimately results in the limited entry of 95% of drug/gene candidates, which are potentially beneficial for central nervous system (CNS) diseases. In order to enhance the brain-specific delivery, in this study we developed a targeting carrier system, which consists of poly(carboxyl ethylene glycol-g-glutamate)-co-poly(distearin-g-glutamate) (CPEGGM-PDSGM) polymersomes with the conjugation of des-octanoyl ghrelin. Des-octanoyl ghrelin across the BBB was reported to be unidirectional (blood-to-brain direction).

View Article and Find Full Text PDF

Ghrelin signaling in human mesenteric arteries.

J Physiol Pharmacol

August 2010

Institute of Biophysics, Bulgarian Academy of Sciences, Sofia, Bulgaria.

The hypothesis is that the ghrelin signal pathway consists of new participants including a local second mediator in human mesenteric arteries. The contractile force of isometric artery preparations was measured using a wire-myograph. Whole-cell patch clamp experiments were performed on freshly isolated single smooth muscle cells from the same tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!