Negative linear compressibility in confined dilatating systems.

J Chem Phys

UMR 7575 LECA, ENSCP-UPMC, 11 rue Pierre et Marie Curie, 75231 Paris, Cedex 05, France.

Published: April 2006

The role of a matrix response to a fluid insertion is analyzed in terms of a perturbation theory and Monte Carlo simulations applied to a hard sphere fluid in a slit of fluctuating density-dependent width. It is demonstrated that a coupling of the fluid-slit repulsion, spatial confinement, and the matrix dilatation acts as an effective fluid-fluid attraction, inducing a pseudocritical state with divergent linear compressibility and noncritical density fluctuations. An appropriate combination of the dilatation rate, fluid density, and the slit size leads to the fluid states with negative linear compressibility. It is shown that the switching from positive to negative compressibility is accompanied by an abrupt change in the packing mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2191054DOI Listing

Publication Analysis

Top Keywords

linear compressibility
12
negative linear
8
compressibility
4
compressibility confined
4
confined dilatating
4
dilatating systems
4
systems role
4
role matrix
4
matrix response
4
fluid
4

Similar Publications

Sparse loudspeaker array design for wideband frequency-invariant beamforming with multiple targets.

J Acoust Soc Am

January 2025

Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China.

Beamforming technology using loudspeaker arrays is widely used in sound applications, but current sparse array design methods focus on optimizing a single beam for a single target direction, limiting their applicability to multi-channel sound systems. This paper presents a design method for sparse loudspeaker line arrays to generate wideband frequency-invariant beams in multiple target directions. A model based on tapped delay lines is developed and a two-stage design approach is proposed.

View Article and Find Full Text PDF

The amount of information contained in speech signals is a fundamental concern of speech-based technologies and is particularly relevant in speech perception. Measuring the mutual information of actual speech signals is non-trivial, and quantitative measurements have not been extensively conducted to date. Recent advancements in machine learning have made it possible to directly measure mutual information using data.

View Article and Find Full Text PDF

Whole slide imaging (WSI) has transformed diagnostic medicine, particularly in the field of cancer diagnosis and treatment. The use of deep learning algorithms for predicting WSIs has opened up new avenues for advanced medical diagnostics. Additionally, stain normalization can reduce the color and intensity variations present in WSI from different hospitals.

View Article and Find Full Text PDF

Aims: The aim of this study was to develop an ultra-short echo time 3D magnetic resonance imaging (MRI) method for imaging subacute myocardial infarction (MI) quantitatively and in an accelerated way. Here, we present novel 3D T- and T -weighted Multi-Band SWeep Imaging with Fourier Transform and Compressed Sensing (MB-SWIFT-CS) imaging of subacute MI in mice hearts .

Methods And Results: Relaxation time-weighted and under-sampled 3D MB-SWIFT-CS MRI were tested with manganese chloride (MnCl) phantom and mice MI model.

View Article and Find Full Text PDF

Purpose: There is a growing interest in using computed tomography (CT) scans to opportunistically assess bone mineral density via Hounsfield units (HU). Previous studies have shown lower HU in patients with vertebral compression fractures (VCFs) and that HU can predict pre-existing VCFs. This study evaluated whether HU from CT scans can predict the number of prevalent VCFs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!