Rate constants for the reactions of CO(3) (-) and O(3) (-) with SO(2) have been measured between 300 and 1440 K in a high temperature flowing afterglow apparatus. The CO(3) (-) rate constants near to the collision rate at low temperatures and fall by about a factor of 50 with temperature until a broad minimum is reached at 900-1300 K. The highest temperature point shows the increasing rate constant. Comparison to drift tube data taken in a helium buffer shows that total energy controls the reactivity, presumably because the reaction goes through a long lived complex even at 1440 K. The reaction of O(3) (-) with SO(2) was studied up to 1400 K. The rate constant is collisional until 700 K and then decreases with increasing temperature. Rate constants measured at 1300 and 1400 K appear to show an increase, but that observation is questionable since O(3) (-) could not be made cleanly. The O(3) (-) data at 1200 K and below show that total energy controls reactivity in that range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2181572 | DOI Listing |
J Chem Theory Comput
January 2025
IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.
Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.
View Article and Find Full Text PDFNat Commun
January 2025
Biophysics Program, Stanford University, Stanford, CA, USA.
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Ks and >500 rate constants in complex with multiple DNA sequences.
View Article and Find Full Text PDFBone Jt Open
January 2025
Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
Aims: The aim of this study was to report long-term clinical outcomes of a modern convertible metal-backed glenoid (MBG) in total shoulder arthroplasty (TSA).
Methods: After a minimum of 15 years, a previously studied cohort of 35 patients who received a modern convertible MBG during the period 1996 to 2005 was contacted for clinical and radiological follow-up. At last follow-up, patients were evaluated radiologically and clinically according to the Constant Score, Simple Shoulder Test, and visual analogue scale for pain.
Chem Asian J
January 2025
Birla Institute of Technology & Science Pilani - Hyderabad Campus, Chemistry, INDIA.
Hot-exciton materials, among all kinds of organic light-emitting diode (OLED) emitters, have better exciton utilization efficiency and efficiency roll-off, making them possible for their practical applications. We studied the photophysical properties of a few hot-exciton molecules based on an anthracene core unit to efficiently harvest all triplet excitons to the lowest excited singlet state. The conversion of triplet exciton to singlet exciton utilizing hRISC can be enhanced due to the 1ππ*←3nπ* transition channel.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
This paper presents a grid-based approach to model molecular association processes as an alternative to sampling-based Markov models. Our method discretizes the six-dimensional space of relative translation and orientation into grid cells. By discretizing the Fokker-Planck operator governing the system dynamics via the square-root approximation, we derive analytical expressions for the transition rate constants between grid cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!