With photolysis-probe technique, we have studied vibrational and rotational energy transfers of CH involving the B (2)Sigma(-) (v=1, 0F(1) transitions are larger than the reverse F(1)-->F(2) transitions in DeltaN=0 for the Ar and CO collisions. The trend of fine-structure conservation is along the order of N(2)O

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2181981DOI Listing

Publication Analysis

Top Keywords

vibrational rotational
8
rotational energy
8
energy transfers
8
transfers involving
8
involving 2sigma-
8
2sigma- v=1
8
v=1 vibrational
4
vibrational level
4
level collisions
4
collisions n2o
4

Similar Publications

Despite its profound significance, the molecular structural changes near the transition state, driven by the vibronic coupling, have remained largely unexplored, leaving a crucial aspect of chemical reactions shrouded in uncertainty. Herein, the dynamical behavior of the reactive flux on the verge of chemical bond breakage was revealed through the spectroscopic characterization of a large amplitude vibrational motion. Highly excited internal rotor states of S methylamine (CHND) report on the structural change as the molecule approaches the transition state, indicating that the quasi-free internal rotation is strongly coupled to the reaction coordinate as their energies near the maximum of the reaction barrier for the N-D chemical bond predissociation.

View Article and Find Full Text PDF

This paper proposes a fault diagnosis method for rotating machinery that integrates transfer learning with the ConvNeXt model (TL-CoCNN), addressing challenges such as small sample sizes and varying operating conditions. To meet the input requirements of the model while minimizing feature loss, an alternative approach to visualizing vibration data is introduced. Specifically, RGB images are synthesized from time-domain, frequency-domain, and time-frequency domain representations of the original signal, which are subsequently used as the input dataset.

View Article and Find Full Text PDF

A cross-entropy corrected hybrid multiconfiguration pair-density functional theory for complex molecular systems.

Nat Commun

January 2025

Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China.

Hybrid density functionals, such as B3LYP and PBE0, have achieved remarkable success by substantially improving over their parent methods, namely Hartree-Fock and the generalized gradient approximation, and generally outperforming the second-order Møller-Plesset perturbation theory (MP2) that is more expensive. Here, we extend the linear scheme of hybrid multiconfiguration pair-density functional theory (HMC-PDFT) by incorporating a cross-entropy ingredient to balance the description of static and dynamic correlation effects, leading to a consistent improvement on both exchange and correlation energies. The B3LYP-like translated on-top functional (tB4LYP) developed along this line not only surpasses the accuracy of its parent methods, the complete active space self-consistent field (CASSCF) and the original MC-PDFT functionals (tBLYP and tB3LYP), but also outperforms the widely used complete active space second-order perturbation theory (CASPT2).

View Article and Find Full Text PDF

Rigid, α-Helical Polypeptide Nanoprobes with Thermally Activated Delayed Fluorescence for Time-Resolved, High-Contrast Bioimaging.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

Thermally activated delayed fluorescence (TADF)-based nanoprobes are promising candidates as bioimaging agents, yet the fine-tuning of their photophysical properties through the modulation of the surrounding matrices remains largely unexplored. Herein, we report the development of polypeptide-TADF nanoprobes, where the rigid, α-helical polypeptide scaffold plays a critical role in enhancing the emission intensity and lifetime of the TADF fluorophore for bioimaging. The α-helical scaffolds not only spatially separated TADF molecules to avoid self-quenching but also anchored the dyes with minimized rotation and vibration.

View Article and Find Full Text PDF

Raman spectroscopy has been proven to be a fast, convenient, and nondestructive technique for advancing our understanding of biological systems. The Raman effect originates from the inelastic scattering of light which directly probe vibration/rotational states in biological molecules and materials. Despite numerous advantages over infrared spectroscopy and continuous technical as well as operational improvement in Raman spectroscopy, an advanced development of the device and more applications have become possible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!