Semiconductor quantum dots (QDs) as a kind of nonisotopic biological labeling material have many unique fluorescent properties relative to conventional organic dyes and fluorescent proteins, such as composition- and size-dependent absorption and emission, a broad absorption spectrum, photostability, and single-dot sensitivity. These properties make them a promising stable and sensitive label, which can be used for long-term fluorescent tracking and subcellular location of genes and proteins. Here, a simple approach for the construction of QD-labeled DNA probes was developed by attaching thiol-ssDNA to QDs via a metal-thiol bond. The as-prepared QD-labeled DNA probes had high dispersivity, bioactivity, and specificity for hybridization. Based on such a kind of probe with a sequence complementary to multiple clone sites in plasmid pUC18, fluorescence in situ hybridization of the tiny bacterium Escherichia coli has been realized for the first time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.200500608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!