Objective: To optimize the adsorption condition of cation-exchange chromatographic media Streamline SP for separation and purification of anti-HBsAg Fab fragment from E. coli.

Methods: The adsorption of the target protein for separation and purification by the cation-exchange chromatographic media Streamline SP was tested using test tube method in balanced buffer solution with different pH values and ion concentrations. The adsorption effect was then verified by cation-exchange chromatography using 1-ml Streamline SP prepacked column and 28-ml Streamline SP self-assembly column.

Results: According to the experiment results of test tube method, the loading buffer with pH of 4.4 and ionic concentration of 100 to 600 mmol/L could achieve optimal target protein adsorption effect by cation-exchange chromatographic media Streamline SP, as verified by cation-exchange chromatography with 1-ml SP prepacked column and 28-ml Streamline SP self-assembly column.

Conclusion: The optimal condition of cation-exchange chromatography selected by test tube method can be applied for separation and purification of anti-HBsAg Fab fragment from E. coli.

Download full-text PDF

Source

Publication Analysis

Top Keywords

separation purification
16
anti-hbsag fab
12
fab fragment
12
cation-exchange chromatographic
12
chromatographic media
12
media streamline
12
test tube
12
tube method
12
cation-exchange chromatography
12
condition cation-exchange
8

Similar Publications

In-Situ Formation of Three-Dimensional Network Intrinsic Microporous Ladder Polymer Membranes with Ultra-High Gas Separation Performance and Anti-Trade-Off Effect.

Angew Chem Int Ed Engl

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China.

The global quest for clean energy and sustainable processes makes advanced membrane extremely attractive for energy-intensive industrial gas separations. Here, we disclosed a series of ultra-high-performance gas separation membranes (PIM-3D-TB) from novel network polymers of intrinsic microporosity (PIM) that combine the advantages of solution processible PIM and small pore size distribution (PSD) of porous organic polymers (POP), which was synthesized by in situ copolymerization of triptycene-2,6-diamine as linear part and triptycene-2,6,13(14)-triamine (TTA) as crosslinker. The resulting PIM-3D-TB membranes demonstrated outstanding separation properties that outperformed the latest trade-off lines for H/CH and O/N.

View Article and Find Full Text PDF

Efficient Photocatalytic Water Purification Through Novel Janus-Nanomicelles with Long-Lived Charge Separation Properties.

Small

January 2025

College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, China.

Although the design of photocatalysts incorporating donor-acceptor units has garnered significant attention for its potential to enhance the efficiency of the photocatalysis process, the primary bottleneck lies in the challenge of generating long-lived charge separation states during exciton separation. Therefore, a novel Janus-nanomicelles photocatalyst is developed using carbazole (Cz) as the donor unit, perylene-3,4,9,10-tetracarboxydiimide (PDI) with long-excited state as the acceptor unit and polyethylene glycol (PEG) as the hydrophilic segment through ROMP polymerization. After optimizing the ratio, Cz-PDI-PEG rapidly adsorbs bisphenol A (BPA) within 10 s through π-π interaction, hydrogen-bonding interaction, and hydrophobic interaction between BPA and hydrophobic blocks when exposed to aqueous humor and efficiently photodegrades BPA (50 ppm) within 120 min for water purification purposes due to its long-lived charge separation state and achieving the highest reported efficiency so far.

View Article and Find Full Text PDF

Quality by Design-Steered Chromatographic Separation and Identification of the Geometric Isomers of Capsiate by Reversed-Phase HPLC and LC-MS.

J Chromatogr Sci

January 2025

Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain.

An efficient reverse-phase high-performance liquid chromatographic method, based on the design of the experiment approach, was developed for the simultaneous determination of capsiate isomers. Critical method parameters, i.e.

View Article and Find Full Text PDF

Top-down analysis of intact proteins and middle-down analysis of proteins subjected to limited digestion require efficient detection of traces of proteoforms in samples, necessitating the reduction of sample complexity by thorough pre-fractionation of the proteome components in the sample. SDS-PAGE is a simple and inexpensive high-resolution protein-separation technique widely used in biochemical and molecular biology experiments. Although its effectiveness for sample preparation in bottom-up proteomics has been proven, establishing a method for highly efficient recovery of intact proteins from the gel matrix has long been a challenge for its implementation in top-down and middle-down proteomics.

View Article and Find Full Text PDF

Bacteria, fungi, and algae are examples of microorganisms that synthesize polysaccharides, which are macromolecules that belong to the carbohydrate class. Production of polysaccharides represents an alternative to chemical and plant-derived compounds that could be used for human well-being which requires implementation of different methods standardized during the extraction and purification process. In the current investigation, Pseudolagarobasidium acaciicola, a novel fungal source of exopolysaccharide (EPS) was used which produced 2773.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!