Particulate sulphate and nitrate in Southern England and Northern Ireland during 2002/3 and its formation in a photochemical trajectory model.

Sci Total Environ

Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.

Published: September 2006

Daily measurements of sulphate and nitrate are reported from Harwell in southern England and Belfast in Northern Ireland for the period 2002/3. When the higher percentiles are compared with the mean concentration, nitrate reveals considerably greater episodicity than either sulphate or PM(10) (measured by TEOM). A photochemical trajectory model using the Master Chemical Mechanism scheme has been used to predict daily concentrations of both nitrate and sulphate aerosol over the period March to August 2002 at the Belfast and Harwell sites. This has been carried out for daily samples using 72, 96 and 120 h air mass back trajectories obtained from both the British Atmospheric Data Centre and the HYSPLIT on-line service. Additionally, model simulations have been conducted for 5 trajectories generated through clustering of the trajectories for individual days. This reveals an under-prediction of the model associated particularly with trajectories originating from the European mainland. In general, the model performs reasonably well in simulating concentrations of both nitrate and sulphate, which is surprising given that the model does not account for processes requiring the presence of liquid water. This suggests that aqueous phase oxidation processes may not make a major contribution to airborne sulphate concentrations in the U.K. in the spring and summer months. It appears that inclusion of explicit ammonium nitrate formation chemistry may be essential to reliable prediction of episodic nitrate peaks.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2006.02.047DOI Listing

Publication Analysis

Top Keywords

sulphate nitrate
8
southern england
8
northern ireland
8
photochemical trajectory
8
trajectory model
8
concentrations nitrate
8
nitrate sulphate
8
nitrate
7
model
6
sulphate
5

Similar Publications

Electrode functional microorganisms in bioelectrochemical systems and its regulation: A review.

Biotechnol Adv

January 2025

Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:

Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail.

View Article and Find Full Text PDF

Long-term exposure to PM and its constituents and visual impairment in schoolchildren: A population-based survey in Guangdong province, China.

Environ Int

January 2025

Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080 China. Electronic address:

Background: Exposure to fine particulate matter (PM) has been linked to visual impairment. Nevertheless, evidence associating PM constituents with visual impairment in schoolchildren is sparse.

Objectives: To explore the effects of long-term exposure to PM and its constituents on visual impairment.

View Article and Find Full Text PDF

Impact of air pollution on the progress-free survival of non-small cell lung cancer patients with anti-PD-1/PD-L1 immunotherapy: a cohort study.

Environ Pollut

January 2025

Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China; Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China. Electronic address:

Air pollution is a well-established risk factor for lung cancer, but limited evidence exists on its impact on the treatment of lung cancer. The objective of this study was to investigate the impact of key pollutants on the efficacy of PD-1/PD-L1 inhibitor immunotherapy in non-small cell lung cancer (NSCLC) patients, thereby providing clinicians with evidence to potentially enhance the efficacy of PD-1 therapy and inform policy decisions for cancer care. To this end, we conducted a study involving 361 NSCLC patients who received PD-1/PD-L1 inhibitor immunotherapy, examining the correlation between air pollution exposure and progression-free survival (PFS) following immunotherapy treatment.

View Article and Find Full Text PDF

Distinguishing abiotic corrosion from two types of microbiologically influenced corrosion (MIC) using a new electrochemical biofilm/MIC test kit.

J Environ Manage

January 2025

Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA; Department of Biological Sciences, Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. Electronic address:

Biofilms can cause biofouling, water quality deterioration, and transmission of infectious diseases. They are also responsible for microbiologically influenced corrosion (MIC) which can cause leaks, resulting in environmental disasters. A new disposable biofilm/MIC test kit was demonstrated to distinguish abiotic corrosion of carbon steel from MIC.

View Article and Find Full Text PDF

Microbial synergy mechanism of hydrogen flux influence on hydrogen-based partial denitrification coupled with anammox in a membrane biofilm reactor.

Environ Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

The hydrogen-based partial denitrification coupled with anammox (H-PDA) biofilm system effectively achieves low-carbon and high-efficiency biological nitrogen removal. However, the effects and biological interaction mechanism of H flux with the H-PDA system have not yet been understood. This study assessed the effects of H flux on interactions among anammox bacteria (AnAOB), denitrifying bacteria (DB), and sulfate-reducing bacteria (SRB) coexisting in a H-PDA system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!