In eukaryotes, changes in cytosolic Ca2+ concentrations ([Ca2+]cyt) are associated with a number of environmental and developmental stimuli. However, measuring [Ca2+]cyt changes in single plant or algal cells is often problematic. Although a wide range of Ca2+-sensitive fluorescent dyes is available, they are often difficult to introduce into plant cells. Micro-injection is the most robust method for dye loading, but is time-consuming, technically demanding, and unsuitable in many cell types. To overcome these problems, we have adapted biolistic techniques to load Ca2+-sensitive dyes into guard cells of the flowering plant, Commelina communis, cells of the green alga Chlamydomonas reinhardtii, and zygotes of the brown alga, Fucus serratus. Using this approach, we have been able to monitor [Ca2+]cyt changes in response to various stimuli, including a novel [Ca2+]cyt response in C. reinhardtii. The method allows the use of free acid and dextran-conjugated dyes. Biolistic loading of differentiated plant cells is easier, quicker, and more widely applicable than micro-injection, and should broaden the study of plant signal transduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2006.02687.x | DOI Listing |
mBio
January 2025
Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA.
Unlabelled: Snow algae darken the surface of snow, reducing albedo and accelerating melt. However, the impact of subsurface snow algae (e.g.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
Nitric oxide (NO) has garnered significant attention as a critical regulatory factor and signaling molecule in plant growth. However, the effects of microplastic pollution on the release of NO by algae have not been reported. Thus, in this study, the release of NO by Skeletonema costatum and Gymnodinium sp.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.
Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada.
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research.
View Article and Find Full Text PDFMicroorganisms
December 2024
State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China.
The target of rapamycin (TOR) serves as a central regulator of cell growth, coordinating anabolic and catabolic processes in response to nutrient availability, growth factors, and energy supply. Activation of TOR has been shown to promote photosynthesis, growth, and development in yeast, animals, and plants. In this study, the complete cDNA sequence of the gene was obtained from .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!