Ischemia models are indispensable for the evaluation of measures to be clinically applied to brain trauma or stroke patients. Slice models provide good control over experimental parameters and allow for comparative examinations of human and animal brain tissue. Experimental tissue, however, may be altered by anaesthesia, preparatory technique, and, in the case of human tissue, by underlying diseases. These influences on tissue behaviour under ischemia were examined electrophysiologically. Native rat tissue slices were prepared either immediately after decapitation (n = 13), during short ether/barbiturate narcosis (n = 18), or after two hours of inhalation anaesthesia (n = 12) imitating clinical narcosis. Tissue from rats in which generalized amygdala-kindled seizures had been triggered by electric stimulation (n = 10) was prepared according to the decapitation protocol, while human tissue (n = 10) was obtained during epilepsy or tumour surgery. Electrophysiological data (latency and amplitude of anoxic depolarization, recovery of evoked potentials) were recorded during ischemia simulation. Neither details of preparation or anaesthesia nor a history of epileptic fits were associated with significant changes of electrophysiological reactions under ischemia. Human tissue showed a significantly higher ability to uphold transmembrane ion gradients under ischemia. The ability of brain tissue to withstand ischemia is obviously species dependent. For the transfer of experimental results into clinical use it is important that interspecies differences alone can bring about a significant change of tissue behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2006.04696.xDOI Listing

Publication Analysis

Top Keywords

human tissue
12
tissue
10
brain tissue
8
tissue behaviour
8
prepared decapitation
8
ischemia
6
electrophysiology ischemic
4
ischemic neocortical
4
brain
4
neocortical brain
4

Similar Publications

Background: Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized.

Methods: Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment.

View Article and Find Full Text PDF

Background: Long-term consumption of Western Diet (WD) is a well-established risk factor for the development of cardiovascular disease (CVD); however, there is a paucity of studies on the long-term effects of WD on the pathophysiology of CVD and sex-specific responses.

Methods: Our study aimed to investigate the sex-specific pathophysiological changes in left ventricular (LV) function using transthoracic echocardiography (ECHO) and LV tissue transcriptomics in WD-fed C57BL/6 J mice for 125 days, starting at the age of 300 through 425 days.

Results: In female mice, consumption of the WD diet showed long-term effects on LV structure and possible development of HFpEF-like phenotype with compensatory cardiac structural changes later in life.

View Article and Find Full Text PDF

Cell-autonomous adaptation: an overlooked avenue of adaptation in human evolution.

Trends Genet

December 2024

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel. Electronic address:

Adaptation to environmental conditions occurs over diverse evolutionary timescales. In multi-cellular organisms, adaptive traits are often studied in tissues/organs relevant to the environmental challenge. We argue for the importance of an underappreciated layer of evolutionary adaptation manifesting at the cellular level.

View Article and Find Full Text PDF

Introduction: Available therapies for peripheral nerve injury (PNI) include surgical and non-surgical treatments. Surgical treatment includes neurorrhaphy, grafting (allografts and autografts) and tissue-engineered grafting (artificial nerve guide conduits), while non-surgical treatment methods include electrical stimulation, magnetic stimulation, laser phototherapy and administration of nerve growth factors. However, the treatments currently available to best manage the different PNI manifestations remain undetermined.

View Article and Find Full Text PDF

TIMP-2 Promotes Wound Healing by Suppressing Matrix Metalloproteinases and Inflammatory Cytokines in Corneal Epithelial Cells.

Am J Pathol

December 2024

Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA. Electronic address:

Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix (ECM) remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathological conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!