Three-dimensional description of the spontaneous onset of homochirality on the surface of a conglomerate crystal phase.

J Phys Chem B

Department of Applied Chemistry, Faculty of Sciences and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.

Published: April 2006

The spontaneous emergence of homochirality in an initially racemic system can be obtained in far-from-equilibrium states. Traditional models do not take into account the influence of inhomogeneities, while they may be of great importance. What would happen when one configuration emerges at one position, and the opposite one at another position? We present a discrete three-dimensional model of conglomerate crystallization, based on 1,1'-binaphthyl crystallization experiments, that takes into account the position and environment of every single elementary growth subunit. Stochastic simulations were performed to predict the evolution of the crystallization process. It is shown that the traditional view of the symmetry breaking can then be extended. Fluctuations of the fixed points related to inhomogeneities are observed, and complex behavior, such as local instabilities, transient structures, and chaotic behavior, can emerge. Our modeling indicates that such complex phenomena could cause large fluctuation of the final enantiomeric excess that is observed experimentally in binaphthyl crystallization. The results presented in this article show the importance of inhomogeneities in understanding enantiomeric excess generated in crystallization and the inadequacy of the models based on the assumption of homogeneity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp057511yDOI Listing

Publication Analysis

Top Keywords

enantiomeric excess
8
crystallization
5
three-dimensional description
4
description spontaneous
4
spontaneous onset
4
onset homochirality
4
homochirality surface
4
surface conglomerate
4
conglomerate crystal
4
crystal phase
4

Similar Publications

Symmetry Breaking: Case Studies with Organic Cage-Racemates.

Acc Chem Res

January 2025

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.

View Article and Find Full Text PDF

Enzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.

View Article and Find Full Text PDF

-Halogenation and -Alkoxylation of Phenylglycine Derivatives by Pd-Mediated C-H Functionalization: Scope and Limitations.

Molecules

January 2025

Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain.

Orthopalladated derivatives from substituted phenylglycines [Pd(μ-Cl)(CHRC(R)(R)N(R)] () react with halogenating reagents (PhICl, Br, I) () to give the corresponding o-halogenated amino acids CH(X)RC(R)(R)N(R) (). The reaction is general and tolerates a variety of functional groups (R to R) at the aryl ring, the Cα, and the N atom. On the other hand, the reaction of [Pd(μ-Cl)(CHRC(R)(R)N(R)] () with PhI(OAc) in the presence of a variety of alcohols ROH () gives the o-alkoxylated phenylglycines CH(OR)RC(R)(R)N(R) (), also as a general process.

View Article and Find Full Text PDF

COFcap2, a recyclable tandem catalysis reactor for nitrogen fixation and conversion to chiral amines.

Nat Commun

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China.

Two or more catalysts conducting multistep reactions in the same reactor, concurrent tandem catalysis, could enable (bio)pharmaceutical and fine chemical manufacturing to become much more sustainable. Herein we report that co-immobilization of metal nanoparticles and a biocatalytic system within a synthetic covalent organic framework capsule, COFcap-2, functions like an artificial cell in that, whereas the catalysts are trapped within 300-400 nm cavities, substrates/products can ingress/egress through ca. 2 nm windows.

View Article and Find Full Text PDF

Asymmetric Photoredox Catalytic Minisci-Type Reactions of α-Bromide Amides.

Org Lett

January 2025

Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.

An asymmetric photoredox catalytic Minisci-type reaction between α-bromide amides and imine-containing azaarenes has been successfully developed. This catalyst system employs a chiral phosphoric acid alongside 3DPAFIPN as a photosensitizer. The reaction produces a diverse array of valuable amides, featuring azaarene-substituted tertiary carbon stereocenters at the β-position, in high yields (up to 85%) and good to excellent enantioselectivities (up to >99% enantiomeric excess (ee)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!