Theoretical study of the complex-forming CH + H2 --> CH2 + H reaction.

J Phys Chem A

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

Published: April 2006

The complex-forming CH + H2 --> CH2 + H reaction is studied employing a recently developed global potential energy function. The reaction probability in the total angular momentum J = 0 limit is estimated with a four-atom quantum wave packet method and compared with classical trajectory and statistical theory results. The formation of complexes from different reactant internal states is also determined with wave packet calculations. While there is no barrier to reaction along the minimum energy path, we find that there are angular constraints to complex formation. Trajectory-based estimates of the low-pressure rate constants are made and compared with experimental results. We find that zero-point energy violation in the trajectories is a particularly severe problem for this reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp056936hDOI Listing

Publication Analysis

Top Keywords

complex-forming -->
8
--> ch2
8
ch2 reaction
8
wave packet
8
reaction
5
theoretical study
4
study complex-forming
4
reaction complex-forming
4
reaction studied
4
studied employing
4

Similar Publications

Using next-generation sequencing data, the complete mitogenomes of six species from the genus were assembled. This study explores the mitochondrial genomes of species, among them the five species from the complex, comparing them with each other and with other species from Dolichoderinae subfamily to understand their evolutionary relationships and evolution. mitochondrial genomes contain the typical set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNAs, and the A + T-rich control region.

View Article and Find Full Text PDF

RNA polymerase III (Pol III) transcribes short, essential RNAs, including the U6 small nuclear RNA (snRNA). At U6 snRNA genes, Pol III is recruited by the snRNA Activating Protein Complex (SNAPc) and a Brf2-containing TFIIIB complex, forming a pre-initiation complex (PIC). Uniquely, SNAPc also recruits Pol II at the remaining splicesosomal snRNA genes (U1, 2, 4 and 5).

View Article and Find Full Text PDF

Mixed-mode separation of antisense oligonucleotides using a single column with complementary anion-exchange and hydrophobic interaction chromatography approaches.

J Chromatogr A

January 2025

Genetics Guided Dementia Discovery (G2D2), Eisai, Inc. 35 Cambridge Park Drive, Suite 200, Cambridge, MA, 02140, USA.

The current study investigates the use of mixed-mode chromatography as a combination of anion-exchange (AEX) and hydrophobic interaction chromatography (HIC) for the analysis and purification of single-stranded antisense oligonucleotides with stereo-controlled phosphorothioate inter- nucleotide linkages. Initially a Scherzo-SS-C18 trimodal stationary phase with reversed-phase/AEX/ cation-exchange (CEX) functionalities is systematically evaluated to reveal the presence of U-shaped retention composed of two retention modes namely AEX and HIC, where the latter was also observed on related trimodal Scherzo SM and SW analogues. For the first time, retention and separation of deprotected oligonucleotides was described on a single mixed-mode column using a combination of AEX and HIC.

View Article and Find Full Text PDF

Differential Cross-Sections for the Vibrationally Excited H + HOD( = 1-4) → H + OD Reactions.

J Phys Chem A

December 2024

State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.

Using the time-dependent wave-packet approach, we calculate the first fully converged state-to-state differential cross-sections for the H + HOD( = 1-4) → H + OD reactions on a highly accurate neural network PES. It is found that, unlike the loss of memory effect observed in the product distributions for low vibrational excitation reactions, high initial OH vibrational excitation significantly influences not only the product vibrational distribution but also the angular distribution. Furthermore, for the H + HOD( = 3,4) reactions, the total integral cross-sections maintain the pronounced oscillatory structures in the = 0 probabilities at low collision energies, which originate from the prereactive van der Waals resonances.

View Article and Find Full Text PDF

The S(D) + D → SD + D reaction is a prototype insertion chemical reaction that involves spin-orbit interactions in the exit channel. In this work, we report spin-orbit state-resolved differential cross sections (DCSs) of this reaction obtained by crossed beam experiments at collision energies of 266.2 and 206.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!