Coupled-states statistical investigation of vibrational and rotational relaxation of OH(2pi) by collisions with atomic hydrogen.

J Phys Chem A

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.

Published: April 2006

We report state-to-state cross sections and thermal rate constants for vibrational and rotational relaxation of OH(2pi) by collision with H atoms. The cross sections are calculated by the coupled-states (CS) statistical method including the full open-shell character of the OH + H system. Four potential energy surfaces (PESs) ((1,3)A' and (1,3)A'') describe the interaction of OH(X2pi) with H atoms. Of these, three are repulsive, and one (1A') correlates with the deep H2O well. Consequently, rotationally and ro-vibrationally inelastic scattering of OH in collisions with H can occur by scattering on the repulsive PESs, in a manner similar to the inelastic scattering of OH by noble gas atoms, or by collisions which enter the H2O well and then reemerge. At 300 K, we predict large (approximately 1 x 10(-10) cm3 molecule(-1) s(-1)) vibrational relaxation rates out of both v = 2 and v = 1, comparable to earlier experimental observations. This anomalously fast relaxation results from capture into the H2O complex. There exists a significant propensity toward formation of OH in the pi(A') lambda-doublet level. We also report state-resolved cross sections and rate constants for rotational excitation within the OH v = 0 manifold. Collisional excitation from the F1 to the F2 spin-orbit manifold leads to an inverted lambda-doublet population.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp055860mDOI Listing

Publication Analysis

Top Keywords

cross sections
12
coupled-states statistical
8
vibrational rotational
8
rotational relaxation
8
relaxation oh2pi
8
rate constants
8
h2o well
8
inelastic scattering
8
statistical investigation
4
investigation vibrational
4

Similar Publications

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Background And Aims: Current heart failure (HF) risk stratification strategies require comprehensive clinical evaluation. In this study, artificial intelligence (AI) applied to electrocardiogram (ECG) images was examined as a strategy to predict HF risk.

Methods: Across multinational cohorts in the Yale New Haven Health System (YNHHS), UK Biobank (UKB), and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil), individuals without baseline HF were followed for the first HF hospitalization.

View Article and Find Full Text PDF

Functionalization of Polymer Surfaces for Organic Photoresist Materials.

ACS Appl Mater Interfaces

January 2025

Tokyo Electron America, Inc., 2400 Grove Blvd., Austin, Texas 78741, United States.

Photoresists are thin film materials designed to transform an optimal image into a mechanical mask. Diverse exposure techniques such as photolithography induce modifications in the exposed areas that result in solubility changes that can then be selectively removed with appropriate agents (developers). Photoresist materials need to keep pace with the increasingly demand for feature size reduction.

View Article and Find Full Text PDF

A fundamental issue in neuroscience is a lack of understanding regarding the relationship between brain function and the white matter architecture that supports it. Individuals with chronic neuropathic pain (NP) exhibit functional abnormalities throughout brain networks collectively termed the "dynamic pain connectome" (DPC), including the default mode network (DMN), salience network, and ascending nociceptive and descending pain modulation systems. These functional abnormalities are often observed in a sex-dependent fashion.

View Article and Find Full Text PDF

We report the first implementation of ion mobility mass spectrometry combined with an ultra-high throughput sample introduction technology for high throughput screening (HTS). The system integrates differential ion mobility (DMS) with acoustic ejection mass spectrometry (AEMS), termed DAEMS, enabling the simultaneous quantitation of structural isomers that are the sub-strates and products of isomerase mediated reactions in intermediary metabolism. We demonstrate this potential by comparing DAEMS to a luminescence assay for the isoform of phosphoglycerate mutase (iPGM) distinctively present in pathogens offering an opportunity as a drug target for a variety of microbial and parasite borne diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!