The symbioses between invertebrates and chemosynthetic bacteria allow both host and symbiont to colonize and thrive in otherwise inhospitable deep-sea habitats. Given the global distribution of the bathymodioline symbioses, this association is an excellent model for evaluating co-speciation and evolution of symbioses. Thus far, the methanotroph and chemoautotroph endosymbionts of mussels are tightly clustered within two independent clades of gamma Proteobacteria, respectively. Further physiological and genomic studies will elucidate the ecological and evolutionary roles that these bacterial clades play in the symbiosis and chemosynthetic community. Due to the overall abundance of the methanotrophic symbioses at hydrothermal vents and hydrocarbon seeps, they likely play a significant, but as of yet unquantified, role in the biogeochemical cycling of methane. With this in mind, the search for methanotrophic symbioses should not be restricted to these known deep-sea habitats, but rather should be expanded to include methane-rich coastal marine and freshwater environments inhabited by methanotrophs and bivalves. Our current understanding of the bathymodioline symbioses provides a strong foundation for future explorations into the origin, ecology, and evolution of methanotroph symbioses, which are now becoming possible through a combination of classical and advanced molecular techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/3-540-28221-1_11 | DOI Listing |
Commun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Ecology, Evolution and Behavior, University of Minnesota Twin Cities, St Paul, 55108, MN, USA.
Premise: Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria.
Methods: Seed representing two species, Dalea candida and D.
Anim Microbiome
January 2025
School of Science, Technology, Engineering, and Mathematics, Division of Biological Sciences, University of Washington Bothell, UWBB-277, Bothell, WA, 98011, USA.
Background: Evolutionary tradeoffs between life-history strategies are important in animal evolution. Because microbes can influence multiple aspects of host physiology, including growth rate and susceptibility to disease or stress, changes in animal-microbial symbioses have the potential to mediate life-history tradeoffs. Scleractinian corals provide a biodiverse, data-rich, and ecologically-relevant host system to explore this idea.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Forest Pathology Research Lab, Faculty of Agriculture and Forestry, Department of Forest Sciences, University of Helsinki, Helsinki, 00790, Finland.
Background: Mutualistic mycorrhiza fungi that live in symbiosis with plants facilitates nutrient and water acquisition, improving tree growth and performance. In this study, we evaluated the potential of mutualistic fungal inoculation to improve the growth and disease resistance of Scots pine (Pinus sylvestris L.) against the forest pathogen Heterobasidion annosum.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University), Mullana, India.
Purpose Of Review: The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets.
Recent Findings: Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!