Objective: To describe the clinical presentation a group of patients with juvenile onset of Huntington disease.
Method: All patients were interviewed following a structured clinical questionnaire. Patients were genotyped for the trinucleotide cytosine-adenine-guanine (CAG) repeat in the Huntington Disease gene. High resolution brain MRI was performed in all patients.
Results: We identified 4 patients with juvenile onset of disease among 50 patients with Huntington disease followed prospectively in our Neurogenetics clinic. Age at onset varied from 3 to 13 years, there were 2 boys, and 3 patients had a paternal inheritance of the disease. Expanded Huntington disease allele sizes varied from 41 to 69 trinucleotide repeats. The early onset patients presented with rigidity, bradykinesia, dystonia, dysarthria, seizures and ataxia. MRI showed severe volume loss of caudate and putamen nuclei (p=0.001) and reduced cerebral and cerebellum volumes (p=0.01).
Conclusion: 8% of Huntington disease patients seen in our clinic had juvenile onset of the disease. They did not present with typical chorea as seen in adult onset Huntington disease. There was a predominance of rigidity and bradykinesia. Two other important clinical features were seizures and ataxia, which related with the imaging findings of early cortical atrophy and cerebellum volume loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0004-282x2006000100002 | DOI Listing |
Front Neurosci
January 2025
Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
Neurodegenerative diseases represent a group of disorders characterized by progressive degeneration of neurons in the central nervous system, leading to a range of cognitive, motor, and sensory impairments. In recent years, there has been growing interest in the association between neurodegenerative diseases and olfactory dysfunction (OD). Characterized by a decline in the ability to detect or identify odors, OD has been observed in various conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS).
View Article and Find Full Text PDFFed Pract
November 2024
Hershel "Woody" Williams Veterans Affairs Medical Center, Huntington, West Virginia.
Background: About 1 in 4 veterans have diabetes, and many also have chronic kidney disease (CKD). Empagliflozin, a sodium-glucose cotransporter-2 (SGLT-2) inhibitor, is approved for the treatment of diabetes. The purpose of this study was to evaluate the effectiveness of empagliflozin on hemoglobin A (HbA) in patients with CKD.
View Article and Find Full Text PDFTransl Neurodegener
January 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) are diverse in clinical presentation and are caused by complex and multiple factors, including genetic mutations and environmental factors. Numerous therapeutic approaches have been developed based on the genetic causes and potential mechanisms of ALS and HD. Currently, available treatments for various neurodegenerative diseases can alleviate symptoms but do not provide a definitive cure.
View Article and Find Full Text PDFNeurosci Res
January 2025
Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan; School of Human Care Studies, Nagoya University of Arts and Sciences, 57 Takenoyama, Iwasaki-cho, Nishin city, Aichi 470-0196, Japan. Electronic address:
Huntingtin-associated protein 1 (HAP1) is an essential constituent of the stigmoid body (STB) and is known as a neuroprotective interactor with causal agents for several neurodegenerative disorders, including huntingtin (HTT) in Huntington's disease. Previous in vitro studies showed that compared to normal HTT, STB/HAP1 exhibited a higher binding affinity for mutant HTT. However, the detailed in vivo relationships of STB/HAP1 with endogenous HTT have not been clarified yet.
View Article and Find Full Text PDFNeurol Clin Pract
April 2025
Neurology, Vanderbilt University Medical Center, Nashville, TN.
Background: Huntington disease (HD) is a genetic neurodegenerative disorder. Given the focus on motor manifestations, nonmotor symptoms are frequently underappreciated in clinical evaluations, despite frequently contributing to primary functional impairment.
Recent Findings: A diagnosis of motor-onset as the definition of manifest symptoms misrepresents the complex nature of HD presentation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!