Maternal immunity provides protection against pertussis in newborn piglets.

Infect Immun

Vaccine & Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.

Published: May 2006

Pertussis continues to be a significant cause of morbidity and mortality in infants and young children worldwide. Methods to control the disease are based on vaccination with either whole-cell or acellular vaccines or treatment with antibiotics. However, despite worldwide vaccination infants are still at the highest risk for the disease. Here we used our newly developed newborn-piglet model to investigate whether transfer of maternal immunity can protect newborn piglets against infection with Bordetella pertussis. Pregnant sows were vaccinated with heat-inactivated B. pertussis or treated with saline (controls). Newborn piglets were allowed to suckle colostrum and milk for 4 to 5 days before they were challenged with 5 x 10(9) CFU of bacteria intrapulmonarily. Elevated levels of B. pertussis-specific secretory immunoglobulin A (S-IgA) and IgG antibodies were found in the colostrum and serum of vaccinated sows but not in those of control sows. Subsequently, significant levels of specific IgG and S-IgA were detected in the serum and bronchoalveolar lavage fluid of piglets born to vaccinated sows. Following infection with 5 x 10(9) CFU of B. pertussis, clinical symptoms, pathological alterations, and bacterial shedding were significantly reduced in piglets that had received passively transferred immunity. Thus, our results demonstrate that maternal immunization might represent an alternative approach to provide protection against pertussis in young infants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459731PMC
http://dx.doi.org/10.1128/IAI.74.5.2619-2627.2006DOI Listing

Publication Analysis

Top Keywords

newborn piglets
12
maternal immunity
8
protection pertussis
8
109 cfu
8
vaccinated sows
8
pertussis
6
piglets
5
immunity protection
4
pertussis newborn
4
piglets pertussis
4

Similar Publications

Characterization of a cell-adapted completely attenuated genotype GIIa porcine epidemic diarrhea virus strain.

Virology

January 2025

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) has caused significant harm to the global pig industry since its discovery. In this study, a highly pathogenic strain of GIIa PEDV CH/HBXT/2018, isolated previously, was continuously passaged in Vero cells up to passage (P)240, resulting in a completely attenuated virus. The proliferation characteristics of different passages of the strain in Vero cells, pathogenicity in newborn piglets, and mutations in S gene sequence indicated that as the passage number increased, the replication efficiency of PEDV in Vero cells gradually improved, with a more pronounced cytopathic effect.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.

View Article and Find Full Text PDF

L-citrulline (L-CIT), a precursor to L-arginine (L-ARG), is a key contributor to the nitric oxide (NO) signaling pathway. Endothelial dysfunction, characterized by deficient nitric oxide synthesis, is implicated in the pathogenesis of various neonatal conditions such as necrotizing enterocolitis (NEC) and bronchopulmonary dysplasia (BPD) associated pulmonary hypertension (PH). This review summarizes the current evidence around the possible role of L-CIT supplementation in the treatment of these conditions.

View Article and Find Full Text PDF

Ethyl caffeate as a novel targeted inhibitor of 3CLpro with antiviral activity against porcine epidemic diarrhea virus.

Virology

January 2025

College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) can cause severe diarrhea death in newborn piglets, resulting in significant economic losses for the pig industry. Therefore, the advancement of safe and effective anti-PEDV drugs for the treatment of PEDV is of paramount importance. In this study, molecular docking was used to screen natural drugs that can target PEDV 3C like protease (3CLpro).

View Article and Find Full Text PDF

Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model.

Bioengineering (Basel)

January 2025

School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA.

Background: A brachial plexus avulsion occurs when the nerve root separates from the spinal cord during birthing trauma, such as shoulder dystocia or a difficult vaginal delivery. A complete paralysis of the affected levels occurs post-brachial plexus avulsion. Despite being reported in 10-20% of brachial plexus birthing injuries, it remains poorly diagnosed during the acute stages of injury, leading to poor intervention approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!