Listeria monocytogenes is a facultative intracellular bacterial pathogen responsible for severe opportunistic infections in humans and animals. The secreted cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates phagosomal escape and allows bacterial growth in the cytosol of infected cells. In order to identify new LLO determinants participating in bacterial pathogenesis, this study focused on a major target of LLO proteolytic cleavage in vitro, the CTL epitope region (residues 91-99). Mutations were generated by site-directed mutagenesis in the epitope or in the two clusters of positive charges flanking the epitope. Two LLO mutants (a single mutation K103A and a double mutation R89G, K90G) were normally and stably secreted by L. monocytogenes. In contrast, a mutant carrying four amino acid substitutions in the epitope itself (Y92K, D94A, E97K, Y98F) was highly susceptible to proteolytic degradation. While these three LLO mutant proteins showed a reduced haemolytic activity, they all promoted efficient phagosomal escape and intracellular multiplication in different cell types, and were non-cytotoxic. The deletion of the epitope (Delta91-99), as well as the substitution of two, three or four of the four lysine residues (K103 to K106) by alanine residues did not lead to the production of a detectable protein. These results confirm the lack of correlation between haemolytic activity and phagosomal membrane disruption. They reveal the importance of the 91-99 region in the production of a stable and functional LLO. LD(50) determinations in the mouse model suggest a possible link between LLO stability and virulence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.28754-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!