IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4(+) T cells and stimulating the proliferation of memory CD4(+) T cells. We investigated the pathogenic role of IL-23 in CD4(+) T cells in mice lacking the IL-1R antagonist (IL-1Ra(-/-)), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra(-/-) mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1beta further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4(+) T cells of IL-1Ra(-/-) mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4(+) T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-kappaB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra(-/-) model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.176.9.5652DOI Listing

Publication Analysis

Top Keywords

cd4+ cells
20
il-17 production
16
spontaneous arthritis
12
il-23
9
stat3 nf-kappab
8
animal model
8
model spontaneous
8
il-1ra-/- mice
8
il-17
6
production
5

Similar Publications

Background: Mycobacterium bovis BCG is the human tuberculosis vaccine and is the oldest vaccine still in use today with over 4 billion people vaccinated since 1921. The BCG vaccine has also been investigated experimentally in cattle and wildlife by various routes including oral and parenteral. Thus far, oral vaccination studies of cattle have involved liquid BCG or liquid BCG incorporated into a lipid matrix.

View Article and Find Full Text PDF

Elucidating the role of pyrimidine metabolism in prostate cancer and its therapeutic implications.

Sci Rep

January 2025

Department of Emergency Medicine, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China.

Our study aims to investigate the role of pyrimidine metabolism in prostate cancer and its associations with the immune microenvironment, drug sensitivity, and tumor mutation burden. Through transcriptomic and single-cell RNA sequencing analyses, we explored metabolic pathway enrichment, immune infiltration patterns, and differential gene expression in prostate cancer samples. The results showed that pyrimidine metabolism-related genes were significantly upregulated in the P2 subgroup compared to the P1 subgroup, with enhanced metabolic activity observed in basal and luminal epithelial cells.

View Article and Find Full Text PDF

CD4FOXP3Exon2 regulatory T cell frequency predicts breast cancer prognosis and survival.

Sci Adv

January 2025

Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.

CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.

View Article and Find Full Text PDF

Previous research has demonstrated ɑ7nAch receptor (ɑ7nAchR) agonists to provide benefit for rheumatoid arthritis (RA) patients. However, the immunological mechanism of action for these ɑ7nAchR agonists has not been elucidated. Herein, the effect of GTS-21, a selective ɑ7nAchR agonist, on the differentiation of Th17 and Th2 cells was assessed.

View Article and Find Full Text PDF

The role of mTOR activation in steroid-resistant asthma: insights from particulate matter-induced mouse model and patient studies.

Inflamm Res

January 2025

Institute of Allergy and Clinical Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.

Particulate matter (PM) exposure has been proposed as one of the causes of steroid resistance. However, studies investigating this using patient samples or animals are still lacking. Therefore, in this study, we aimed to investigate the changes in cytokines and mTOR (mammalian target of rapamycin) activation in patients with steroid resistant asthma and the role of mTOR in a mouse model of steroid resistant asthma induced by PM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!