TNFR-associated factor 1 (TRAF1) is unique among the TRAF family, lacking most zinc-binding features, and showing marked up-regulation following activation signals. However, the biological roles that TRAF1 plays in immune cell signaling have been elusive, with many reports assigning contradictory roles to TRAF1. The overlapping binding site for TRAFs 1, 2, and 3 on many TNFR superfamily molecules, together with the early lethality of mice deficient in TRAFs 2 and 3, has complicated the quest for a clear understanding of the functions of TRAF1. Using a new method for gene targeting by homologous recombination in somatic cells, we produced and studied signaling by CD40 and its viral oncogenic mimic, latent membrane protein 1 (LMP1) in mouse B cell lines lacking TRAF1, TRAF2, or both TRAFs. Results indicate that TRAFs 1 and 2 cooperate in CD40-mediated activation of the B cell lines, with a dual deficiency leading to a markedly greater loss of function than that of either TRAF alone. In the absence of TRAF1, an increased amount of TRAF2 was recruited to lipid rafts, and subsequently, more robust degradation of TRAF2 and TRAF3 was induced in response to CD40 signaling. In contrast, LMP1 did not require either TRAFs 1 or 2 to induce activation. Taken together, our findings indicate that TRAF1 and TRAF2 cooperate in CD40 but not LMP1 signaling and suggest that cellular levels of TRAF1 may play an important role in modulating the degradation of TRAF2 and TRAF3 in response to signals from the TNFR superfamily.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.176.9.5388 | DOI Listing |
Int J Biol Macromol
January 2025
MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
The present study aimed to extract and purify the glycoprotein from Cirsii Herba (CHPs), and investigate its immunomodulatory activity and molecular mechanism in RAW264.7 macrophages. The results showed that CHPs contained 14.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2024
Curtin University, Curtin Medical Research Institute (Bentley, WA, AUSTRALIA).
Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.
View Article and Find Full Text PDFGlia
January 2025
Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, USA.
Microglia play a critical role in maintaining central nervous system (CNS) homeostasis and display remarkable plasticity in their response to inflammatory stimuli. However, the specific signaling profiles that microglia adopt during such challenges remain incompletely understood. Traditional transcriptomic approaches provide valuable insights, but fail to capture dynamic post-translational changes.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Basic Medicine, Qingdao University, Qingdao, China. Electronic address:
This study investigates the therapeutic effects of recombinant human IL-10 (rhIL-10) administered via aerosol inhalation in acute lung injury (ALI), with a particular focus on neutrophils. It explores how rhIL-10, in the presence of platelets, modulates neutrophil polarization to ameliorate acute lung injury. Initially, the ALI model established in mice demonstrated that aerosol inhalation of rhIL-10 significantly mitigated the cytokine storm in the lungs, reduced pulmonary edema, and alleviated histopathological damage to lung tissue.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
AT-31 BIO Inc., 403 Business Incubation Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:
Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!