In general, cloning undifferentiated preimplantation embryos (blastomeres) or embryonic stem cells is more efficient than cloning differentiated somatic cells. Therefore, there has been an assumption that tissue-specific stem cells might serve as efficient donors for nuclear transfer because of the undifferentiated state of their genome. Here, we show that this is not the case with adult hematopoietic stem cells (HSCs). Although we have demonstrated for the first time that mouse HSCs can be cloned to generate offspring, the birth rates (0-0.7%) were lowest among the clones tested (cumulus, immature Sertoli and fibroblast cells). Only 6% of reconstructed embryos reached the morula or blastocyst stage in vitro (versus 46% for cumulus clones; P < 5 x 10(-10)). Transcription and gene expression analyses of HSC clone embryos revealed that they initiated zygotic gene activation (ZGA) at the appropriate timing, but failed to activate five out of six important embryonic genes examined, including Hdac1 (encoding histone deacetylase 1), a key regulator of subsequent ZGA. These results suggest that the HSC genome has less plasticity than we imagined, at least in terms of reprogrammability in the ooplasm after nuclear transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.02913DOI Listing

Publication Analysis

Top Keywords

nuclear transfer
12
stem cells
12
hematopoietic stem
8
cells
5
inefficient reprogramming
4
reprogramming hematopoietic
4
stem
4
stem cell
4
cell genome
4
genome nuclear
4

Similar Publications

Swine clones: potential application for animal production and animal models.

Anim Reprod

January 2025

Faculdade de Zootecnia e Engenharia de Alimentos - FZEA, Universidade de São Paulo - USP, Pirassununga, SP, Brasil.

Somatic cell nuclear transfer (SCNT), or cloning, is used to reprogram cells and generate genetically identical embryos and animals. However, the cloning process is inefficient, limiting its application to producing valuable animals. In swine, cloning is mainly utilized to produce genetically modified animals.

View Article and Find Full Text PDF

Mitochondrial genome of : features, RNA editing, and insights into male sterility.

Front Plant Sci

January 2025

Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China.

Introduction: Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. , a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties.

View Article and Find Full Text PDF

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.

View Article and Find Full Text PDF

Background: Diffuse large B-cell lymphoma (DLBCL) is a prevalent and aggressive form of non-Hodgkin's lymphoma with a complex etiology. NOP2/Sun domain 2 (NSUN2) is an RNA methyltransferase that has been linked to the regulation of gene expression in various cancers. However, the function of NSUN2 in DLBCL, specifically its contribution to exosome-driven tumor progression, remains to be thoroughly elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!