Background: ATP2C1 is a calcium/manganese-ATPase localized in the Golgi apparatus and known as responsible gene for Hailey-Hailey disease. But its localization and roles in the epidermis are not fully elucidated.

Objective: To explore the localization and biological role of ATP2C1 in normal epidermis in terms of differentiation states.

Methods: We examined the immunohistochemical distribution of ATP2C1 in normal epidermis and measured the expression of ATP2C1 in cultured keratinocytes following forced detachment from culture dish or following treatment with high concentrations of calcium. Furthermore, we knockdown ATP2C1 expression in cultured keratinocytes by using RNA interference procedure to abrogate cation accumulation in cell organelles.

Results: ATP2C1 is specifically localized at the basal cell layer in normal epidermis. Neither detachment of keratinocyte from culture dish nor treatment with high concentrations of calcium suppressed ATP2C1 expression, while both procedures induced differentiation markers, K10 keratin and involucrin. In contrast, knockdown of ATP2C1 induced these differentiation markers of cultured keratinocytes. Furthermore, treatment of keratinocytes with a calcium ionophore, A23187, did not up-regulate differentiation markers of keratinocytes, while a more manganese selective ionophore Br-A23187 up-regulated these differentiation markers.

Conclusion: Our results suggest that ATP2C1 plays an essential role for basal keratinocytes to keep in the undifferentiated state and that its reduction evokes differentiation and up-localization to suprabasal layers most likely via the manganese starvation in the Golgi apparatus of keratinocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdermsci.2006.03.003DOI Listing

Publication Analysis

Top Keywords

normal epidermis
16
cultured keratinocytes
12
differentiation markers
12
atp2c1
10
atp2c1 localized
8
localized basal
8
layer normal
8
golgi apparatus
8
atp2c1 normal
8
culture dish
8

Similar Publications

Single-cell RNA-seq analysis characterizes developmental mechanisms of cellular differentiation, lineage determination, and reprogramming with differential conditioning of the microenvironment. In this article, the underlying dynamics are formulated via optimal transport with algorithms that calculate the transition probability of the state of cell dynamics over time. The algorithmic biases of optimal transport (OT) due to entropic regularization are balanced by Sinkhorn divergence, which normally de-biases the regularized transport by centering them.

View Article and Find Full Text PDF

Keratinocytes are the primary component of the epidermis, so maintaining the precise balance between proliferation and differentiation is essential for conserving epidermal structure and function. Rosae multiflorae fructus extract (RMFE) has wide application in the cosmetic industry, but the molecular mechanisms underlying beneficial effects on keratinocytes are still not fully understood. In this study, we found that RMFE promoted epidermal differentiation and enhanced the barrier function of normal human epidermal keratinocytes (NHEKs) and three-dimensional epidermis model in culture.

View Article and Find Full Text PDF

Characterization of Cutaneous Radiation Syndrome in a Mouse Model Using [18F]F- Fluorodeoxyglucose Positron Emission Tomography.

Health Phys

January 2025

Nuclear Medicine and Molecular Imaging Sciences Program, Department of Clinical & Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, Birmingham, AL

Ionizing radiation on the skin has the potential to cause various sequelae affecting quality of life and even leading to death due to multi-system failure. The development of radiation dermatitis is attributed to oxidative damage to the skin's basal layer and alterations in immune response, leading to inflammation. Past studies have shown that [18F]F-2-fluoro-2-deoxyglucose positron emission tomography-computed tomography ([18F]F-FDG PET/CT) can be used effectively for the detection of inflammatory activity, especially in conditions like hidradenitis suppurativa, psoriasis, and early atherosclerosis.

View Article and Find Full Text PDF

Inflammaging has long been linked to the pathogenesis of various aging-associated disorders, including cardiovascular disease, obesity, type 2 diabetes, and dementia. Yet, the origins of inflammaging remain unclear. Although inflammatory dermatoses such as psoriasis and atopic dermatitis predispose to the development of certain aging-associated disorders, suggesting a pathogenic role of cutaneous inflammation in these disorders, the great majority of aged humans do not have inflammatory dermatoses.

View Article and Find Full Text PDF

Langerhans Cells Directly Interact with Resident T Cells in the Human Epidermis.

JID Innov

January 2025

Center for Cancer Immunology is a part of Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Adult human skin contains nearly twice as many T cells as the peripheral blood, which include tissue-resident memory T cells. However, the precise mechanisms maintaining tissue-resident memory T cells in the healthy skin remain unclear. Using normal human skin samples, we find that Langerhans cells (LCs) contact T cells in the epidermis of the elderly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!