An isolated strain of Bacillus subtilis identified by 16S rDNA sequence analysis produces an enantioselective ester hydrolase. Whole cells of B. subtilis (RRL BB1) and enzyme derived from it was capable of enantioselective hydrolysis of several racemates including drug intermediates with moderate to high enantioselectivity as already reported by us. In this communication, we describe cloning of the gene encoding the enantioselective esterase designated as estBB1. The primary structure of the enzyme determined from the nucleotide sequence indicated that esterase estBB1 has Mw approximately 52kDa and pI approximately 5.2 and belongs to the family of type B carboxylesterases with 50-60% similarity at amino acid level. Alignment studies of sequences of the estBB1 and Pnb esterase 56C8 from B. subtilis showed that estBB1 has an alpha/beta hydrolase fold with catalytic triad formed by Ser190, Glu305 and His394 at active site and Ser190 is located in the conserved motif -G-X-S-X-G-.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2006.02.018DOI Listing

Publication Analysis

Top Keywords

bacillus subtilis
8
subtilis rrl
8
rrl bb1
8
molecular cloning
4
cloning carboxylesterase
4
carboxylesterase gene
4
gene biochemical
4
biochemical characterization
4
characterization encoded
4
encoded protein
4

Similar Publications

Therapeutic potential of Bacillus-derived lipopeptides in controlling enteropathogens and modulating immune responses to mitigate post-weaning diarrhea in swine.

Vet Res Commun

January 2025

Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.

Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).

View Article and Find Full Text PDF

Enhanced pullulanase production through expression system optimization and biofilm-immobilized fermentation strategies.

Int J Biol Macromol

January 2025

National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China.

Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation.

View Article and Find Full Text PDF

Marine microbes suppressed Vibrio and enhanced biological performance of euryhaline rotifer, Brachionus plicatilis.

Mar Pollut Bull

January 2025

Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266100, China. Electronic address:

The excessive use of antibiotics in mariculture has surpassed permitted levels, leading to their release into surrounding waters and accumulation in cultured organisms, which poses risks to human health and highlighting the urgent need for alternatives to reduce antibiotic use. Therefore, the present study aimed to test four microbes including Debaryomyces hansenii, Ruegeria mobilis, Lactobacillus plantarum and Bacillus subtilis, on lowering Vibrio, promoting population increase and survival of Brachionus plicatilis. The digestive enzymes activity including α-amylase, lipase and protease, microbial retention and biochemical composition of rotifers were analyzed.

View Article and Find Full Text PDF

The LutR protein represses the transcription of genes encoding enzymes for the utilization of l-lactate in through binding to a specific DNA region. In this study, we employed oligonucleotide probes modified by viscosity-sensitive tetramethylated thiophene-BODIPY fluorophores to investigate the impact of selected metabolites on the LutR-DNA complex. Our goal was to identify the effector molecule whose binding alters the protein-DNA affinity, thereby enabling gene transcription.

View Article and Find Full Text PDF

Background: Bacillus species produce antimicrobial lipopeptides (LPs) and methyl jasmonate (MeJA) induces resistance in harvested fruits against postharvest pathogens. However, there is limited evidence of the combined efficacy of Bacillus LPs and MeJA to suppress postharvest diseases.

Results: This study presents the combined effect of Bacillus LPs and MeJA to suppress P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!