A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased production of chymosin by glycosylation. | LitMetric

Increased production of chymosin by glycosylation.

J Biotechnol

Chr. Hansen, Bøge Allé 10-12, DK-2970 Hørsholm, Denmark.

Published: September 2006

Filamentous fungi are well known in the industry as producers of large amounts of extracellular proteins. However, production levels of heterologous proteins are often disappointing low. In this paper it is shown that increasing glycosylation is a powerful strategy for increasing production levels of chymosin in filamentous fungi. Two different concepts based on glycosylation were tested. First, we improved a poorly used N-glycosylation site within the prochymosin molecule. The resulting highly glycosylated chymosin molecule was expressed in Aspergillus niger. It was shown that production of the glycosylated protein was much more efficient, giving a yield increase of more than 100% compared to production of the native chymosin molecule. In an alternative strategy the N-glycosylation site was located outside of the native chymosin molecule, on a linker separating prochymosin from its carrier molecule. Also in this case significantly increased production levels were obtained. This strategy might offer a powerful tool for increasing production levels of other heterologous proteins as well.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2006.02.024DOI Listing

Publication Analysis

Top Keywords

production levels
16
chymosin molecule
12
increased production
8
filamentous fungi
8
levels heterologous
8
heterologous proteins
8
increasing production
8
n-glycosylation site
8
native chymosin
8
production
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!