2B4 was initially discovered on murine NK cells and T cells displaying non-MHC dependent cytotoxicity. Human 2B4 was cloned based on sequence homology with mouse 2B4. Recent evidence suggests that the function of this receptor might be different in the two species. Human 2B4 activates NK cell cytotoxicity and interferon gamma production when engaged by CD48, its ligand, on target cells. This activating function of human 2B4 requires recruitment of the SH2 domain containing molecule, SLAM-associated protein or SAP. In the absence of SAP in human NK cells, as occurs in immature NK cells or NK cells from X-linked lymphoproliferative disorder (XLPD) patients, human 2B4 acts as an inhibitory receptor. In contrast, in vitro and in vivo studies using 2B4-deficient mice suggest that the major function of mouse 2B4 is to inhibit murine NK cell functions when triggered by CD48 on target cells, although there are reports of activating function of murine 2B4. This inhibitory function of murine 2B4 is mediated by EAT-2, ERT and possibly other phosphatases like SHP-1 and SHIP. 2B4-SAP interaction in mouse NK cells might be a low affinity one and might not be physiologically relevant considering the inhibitory function of 2B4. This suggests that mouse and human 2B4 diverged functionally with the evolution of greater affinity between 2B4 and SAP in the human species. We speculate that evolutionary pressure from viral infections, possibly EBV, might have led to the emergence of this association and activating function of 2B4 in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imlet.2006.02.006 | DOI Listing |
Adv Sci (Weinh)
January 2025
McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada.
Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.
View Article and Find Full Text PDFBrain Commun
January 2025
Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus.
Dominantly inherited intronic GAA repeat expansions in the fibroblast growth factor 14 gene have recently been shown to cause spinocerebellar ataxia 27B. Currently, the pathogenic threshold of (GAA) repeat units is considered highly penetrant, while (GAA) is likely pathogenic with reduced penetrance. This study investigated the frequency of the GAA repeat expansion and the phenotypic profile in a Cypriot cohort with unresolved late-onset cerebellar ataxia.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India.
Sleep is a universally conserved behavior whose origin and evolutionary purpose are uncertain. Using phylogenomics, this article investigates the evolutionary foundations of sleep from a never before used perspective. More specifically, it identifies orthologs of human sleep-related genes in the Lokiarchaeota of the Asgard superphylum and examines their functional role.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFFront Immunol
January 2025
Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
Introduction: Tuberculosis (TB) is the deadliest infectious disease worldwide and novel vaccines are urgently needed. HLA-E is a virtually monomorphic antigen presentation molecule and is not downregulated upon HIV co-infection. HLA-E restricted specific CD8 T cells are present in the circulation of individuals with active TB (aTB) and infection (TBI) with or without HIV co-infection, making HLA-E restricted T cells interesting vaccination targets for TB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!