Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pancreatic beta-cells have ryanodine receptors but little is known about their physiological regulation. Previous studies have shown that arachidonic acid releases Ca(2+) from intracellular stores in beta-cells but the identity of the channels involved in the Ca(2+) release has not been elucidated. We studied the mechanism by which arachidonic acid induces Ca(2+) concentration changes in pancreatic beta-cells. Cytosolic free Ca(2+) concentration was measured in fura-2-loaded INS-1E cells and in primary beta-cells from Wistar rats. The increase of cytosolic Ca(2+) concentration induced by arachidonic acid (150microM) was due to both Ca(2+) release from intracellular stores and influx of Ca(2+) from extracellular medium. 5,8,11,14-Eicosatetraynoic acid, a non-metabolizable analogue of arachidonic acid, mimicked the effect of arachidonic acid, indicating that arachidonic acid itself mediated Ca(2+) increase. The Ca(2+) release induced by arachidonic acid was from the endoplasmic reticulum since it was blocked by thapsigargin. 2-Aminoethyl diphenylborinate (50microM), which is known to inhibit 1,4,5-inositol-triphosphate-receptors, did not block Ca(2+) release by arachidonic acid. However, ryanodine (100microM), a blocker of ryanodine receptors, abolished the effect of arachidonic acid on Ca(2+) release in both types of cells. These observations indicate that arachidonic acid is a physiological activator of ryanodine receptors in beta-cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2006.02.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!