The photodynamic activity of a carrier-sensitizer system consisting of heterotopic colloidal nanoparticles (diameter 100-1000 nm) of a cationic amphiphilic cyclodextrin, heptakis(2-omega-amino-O-oligo(ethylene oxide)-6-hexylthio)-beta-CD (SC6CDNH2) encapsulating the anionic 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphyrin (TPPS) is investigated by an interdisciplinary approach involving the combination of time-resolved absorption and emission techniques with in vitro studies on cultured tumor cells. In a range of TPPS:SC6CDNH2 molar ratios between 1:10 and 1:50 these nanoparticles preserve the photodynamic properties of the entrapped photoactive agent. In fact, the triplet state of TPPS is efficiently populated, very long-lived and, as a consequence, able to produce singlet oxygen (the essential species for the photodynamic action) with quantum yield comparable to the free TPPS. Photodynamic efficacy of the carrier/sensitizer system is proven by in vitro studies on tumor Hela cells treated with TPPS:SC6CDNH2 at different molar ratio, showing significant cells death upon illumination with visible light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2006.03.035 | DOI Listing |
Nanoscale
January 2025
School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence.
View Article and Find Full Text PDFJ Med Virol
February 2025
Department of Chemistry, Assam University, Silchar, India.
The biological applications of noncationic porphyrin-fullerene (P-F) dyads as anti-HIV agents have been limited despite the established use of several cationic P-F dyads as anti-cancer photodynamic therapy (PDT) agents. This article explores the potential of amphiphilic non-cationic porphyrin-fullerene dyads as HIV-1 inhibitors under both PDT (light-treated) and non-PDT (dark) conditions. The amphiphilic P-F dyads, PBC and PBC, demonstrated enhanced efficacy in inhibiting the entry and production of HIV-1 (subtypes B and C).
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, P. R. China.
High drug resistance remains a challenge for chemotherapy against hepatocellular carcinoma (HCC). Combining chemotherapeutic agents with microRNA (miRNA), which simultaneously regulates multiple pathways, offers a promising approach to improve therapeutic efficacy against HCC. Although cationic amphiphilic copolymers have been used to co-deliver these agents, their effectiveness is often limited by low co-encapsulation efficiency and inherent cationic toxicity.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Chemistry, Tianjin University, Tianjin 300072, China.
The integration of photodynamic therapy (PDT) and photothermal therapy (PTT) offers a promising strategy for enhancing phototherapy efficiency. Herein, we present a dual-functional, biocompatible nanocomposite system for combination PDT/PTT therapy. The system utilizes a highly biocompatible nanoparticle assembled by an amphiphilic short peptide with the assistance of Zn as a carrier.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:
Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!