A simple on-line preconcentration method of protein for capillary electrophoresis (CE) using a cellulose acetate (CA)-coated porous membrane was proposed. CA membrane is fabricated at one of the ends of the column that allows the passage of buffer ions but excludes larger protein molecules. Protein sample is continuously electrokinetically loaded and trapped by the membrane. When injection is completed, the direction of the electric field is switched and the trapped proteins are then separated by conventional CE procedure. The results achieved showed that the preconcentration mechanism of this method was based on size-exclusion effect. Bovine serum albumin (BSA) was used for model protein sample, and signal enhancement of 550-fold with 15 min injection time was achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2006.03.105 | DOI Listing |
J Chromatogr A
January 2025
Grupo MINTOTA, Departament de Química Analítica, Facultat de Química, Universitat de Valencia, C/ Dr. Moliner 50, Burjassot, Valencia E46100, Spain.
In this work, a DNPH doped PDMS based membrane was developed to facilitate carbonyl compound derivatization. This membrane delivers DNPH in presence of carbonyl compounds to form hydrazones. Subsequently, the resulting hydrazones are preconcentrated, separated and detected by in-tube solid phase microextraction (IT-SPME) coupled on-line with capillary liquid chromatography (CapLC) with Uv-Vis diode array detection (DAD).
View Article and Find Full Text PDFJ Sep Sci
September 2024
Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Hobart, Australia.
Multiple-step on-line preconcentration, a combination of at least two stacking techniques has been developed to increase the sensitivity in capillary electrophoresis (CE) for analytes in various samples. It is usually conducted sequentially, or in some cases, synergistically, where different stacking modes occur simultaneously. Multiple-step techniques allow simultaneous preconcentration and separation of various kinds of analytes in different complex samples in a single CE run.
View Article and Find Full Text PDFJ Sep Sci
August 2024
Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.
This review provides an overview of recent works focusing on the determination of amino acids (AAs) and peptides using capillary electrophoresis with contactless conductivity detection and ultraviolet (UV) detection, which is the most widespread detection in capillary electromigration techniques, without pre-capillary derivatization. Available options for the UV detection of these analytes, such as indirect detection, complexation with transition metal ions, and in-capillary derivatization are described. Developments in the field of direct detection of UV-absorbing AAs and peptides as well as progress in chiral separation are described.
View Article and Find Full Text PDFAnal Chim Acta
September 2024
Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic; Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, SK-832 32, Bratislava, Slovak Republic. Electronic address:
Background: Kratom is a herbal substance belonging to the group of new psychoactive substances. It contains psychoactive indole alkaloids mitragynine and 7-hydroxymitragynine. At low doses, they act as psychostimulants and at higher doses they mediate an opioid-like effect.
View Article and Find Full Text PDFAnal Sci
December 2024
Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-Oka, Nishi-Ku, Fukuoka, 819-0395, Japan.
In our previous study, the combination of two on-line sample preconcentration techniques, large-volume sample stacking with an electroosmotic flow (EOF) pump (LVSEP) and transient isotachophoresis (tITP), in microchip electrophoresis (MCE) was developed, which was named large-volume dual preconcentration by isotachophoresis and stacking (LDIS). LDIS was apparently effective for improving the sensitivity and the peak shape. In LDIS, however, there was a limit to the improvement of the sensitivity enhancement factor (SEF) since the amount of analytes to be concentrated was limited to the channel volume.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!