A cell-penetrating peptide derived from mammalian cell uptake protein of Mycobacterium tuberculosis.

Anal Biochem

Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, Berkeley, 94720, USA.

Published: June 2006

A Mycobacterium tuberculosis membrane protein called Mycobacterium cell entry protein (Mce1A) was previously shown to mediate the uptake of nonpathogenic Escherichia coli and latex beads by nonphagocytic mammalian cells. Here we characterize further the in vitro invasive activity of Mce1A using colloidal gold nanoparticles and fluorescent latex microspheres. Mce1A-coated colloidal gold particles induced plasma membrane invagination and entered membrane-bound compartments inside HeLa cells. Few of the protein-coated particles were also found in the cytosol compartment. Cytochalasin D and nocodazole inhibited the uptake by HeLa cells, indicating that rearrangement of both microtubules and microfilaments was necessary for the uptake. The functional domain of Mce1A for invasion was narrowed to a highly basic 22-amino acid sequence termed Inv3. A synthetic Inv3 peptide stimulated uptake of colloidal gold particles as well as latex microspheres by HeLa cells. A chimeric protein composed of Inv3 sequence at the N terminus of beta-galactosidase appeared to stain the nuclear membrane, suggesting that it entered the HeLa cell cytoplasm. These observations suggest that the cell uptake activity of Mce1A is confined to a small peptide domain located in the core region of the protein. Inv3 could be used to ferry any protein in fusion with it into mammalian cells and may serve as a potent nonviral delivery system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2006.01.044DOI Listing

Publication Analysis

Top Keywords

colloidal gold
12
hela cells
12
cell uptake
8
mycobacterium tuberculosis
8
mammalian cells
8
activity mce1a
8
latex microspheres
8
gold particles
8
uptake
6
protein
6

Similar Publications

Hapten prediction, monoclonal antibody preparation, and development of an immunochromatographic assay for the detection of fenamiphos.

J Hazard Mater

January 2025

International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, PR China. Electronic address:

Fenamiphos (FENA) is an organophosphorus insecticide, and its residues in fruits, vegetables, and the environment have raised concerns. Therefore, it is very important to develop a simple, rapid, and accurate method for FENA detection. In this study, a novel FENA hapten was designed and predicted based on computer-aided simulation technology, and high-performance anti-FENA monoclonal antibodies were screened using a matrix effect-enhanced screening method, with a half-maximal inhibitory concentration of 1.

View Article and Find Full Text PDF

Dengue virus (DENV) is an important arthropod-borne viral disease, with four antigenically and genetically diverse serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Timely and accurate diagnosis of dengue virus serotypes is crucial for the management of outbreaks. This study focussed on the development of a RT-PCR based lateral flow strip assay to detect DENV serotypes in a dual detection manner without using gel electrophoresis.

View Article and Find Full Text PDF

A highly sensitive lateral flow immunoassay (LFIA) for imidacloprid, a widely used neonicotinoid insecticide, has been developed. The LFIA realizes the indirect coupling of anti-imidacloprid antibodies and gold nanoparticle (GNP) labels directly in the course of the assay. For this purpose, the common GNPs conjugate with anti-imidacloprid antibodies and are changed into a combination of non-modified, anti-imidacloprid antibodies, and the GNPs conjugate with anti-species antibodies.

View Article and Find Full Text PDF

Biomacromolecules generally exist and function in aqueous media. Is it possible to estimate the state and properties of molecules in an initial three-dimensional colloidal solution based on the structure properties of biomolecules adsorbed on the two-dimensional surface? Using atomic force microscopy to study nanosized objects requires their immobilization on a surface. Particles undergoing Brownian motion in a solution significantly reduce their velocity near the surface and become completely immobilized upon drying.

View Article and Find Full Text PDF

Dimer Is Not Double: The Unexpected Behavior of Two-Floor Peptide Nanosponge.

Molecules

December 2024

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.

Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!