The pyrolysis behavior of isoprocarb (an insecticide with contact and stomach action) is investigated using pyrolysis-gas chromatography-mass spectrometry. The pyrolysis products are separated using an HP-5 column under temperature program with helium as the carrier gas. The total of 80 separated pyrolysis components at 600 degrees C, 750 degrees C, and 900 degrees C under helium atmosphere are identified using a probability-based matching search procedure, combined with the correlation of boiling point (BP) and Lee retention index (RI). Some of the BP values of the tentative components are estimated using the group contributions method because experimental values are not available. The levels of the identified components are estimated by the peak area normalization method from the chromatogram. It is found that isoprocarb decomposes more with the increase of temperature, and a large number of mono aromatics and polycyclic aromatic hydrocarbons and their derivatives are produced when the pyrolysis temperature is higher than 750 degrees C. The content of the decomposition products in the pyrolysate varies from 0.04% to 22.20%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/chromsci/44.3.141 | DOI Listing |
Heliyon
January 2025
Laser and Plasma Research Institute, Shahid Beheshti, University, G.C., Evin, 19839-63113, Tehran, Iran.
One of the best and most advanced methods for disposal of urban, hospital, industrial, and other hazardous waste is to convert waste into combustible gases in reactors based on plasma arc technology. Also used for renewable energy generation, this technology involves thermal treatment without a combustion process; therefore, the waste is completely decomposed into simple molecules in a near vacuum environment almost devoid of Oxygen at elevated temperatures. The present research uses a thermal transferred arc plasma reactor to conduct a feasibility study on the pyrolysis of three types of wastes: Antar, Orthotoluenediamine (OTD), and Tar.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il 81441, Saudi Arabia; Chemical Engineering Department, Faculty of Engineering, University of Blida, PO Box 270, Blida 09000, Algeria.
Investigating the fascinating world of natural fibers, where Syagrus romanzoffiana fibers (SrFs) are promising substitutes for glass and synthetic fibers in composite materials, is more than interesting. The improvement of SrFs through an environmentally friendly treatment employing sodium bicarbonate (NaHCO₃) at different concentrations (5 %, 10 %, 20 %, and 30 % by weight) over various durations (24, 72, and 168 h) is the subject of this study. The objective is to provide a sustainable and economical approach to enhancing fiber characteristics.
View Article and Find Full Text PDFWaste Manag
January 2025
School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
Recycling waste to produce liquid fuels for the automotive and aviation industries is a major global concern, especially in light of the ongoing energy crisis. Because waste is used in thermal conversion processes, the resulting liquid products often require additional processing to reduce their density and viscosity, and to remove oxygenated compounds or pollutants that hinder further utilization. Catalytic hydrogenolytic reactions such as hydrodeoxygenation (HDO) and hydrocracking (HC) have been extensively applied to upgrade pyrolysis oils.
View Article and Find Full Text PDFBiodegradation
January 2025
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia.
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally.
View Article and Find Full Text PDFACS Omega
January 2025
State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China.
Under the environment of energy transformation in the world, underground coal gasification (UCG) is an important means to realize the green and clean development and utilization of deep coal resources. Due to a series of complex chemical reactions, the porosity and permeability of coal have changed significantly. Accurately characterizing the porosity and permeability of gasified coal is of great significance to the field screening, production control, and numerical simulation of the UCG project.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!