Insulin-like growth factor I (IGF-I) and platelet-derived growth factor (PDGF) have been identified as significant mitogens for liver myofibroblasts (LMFs), one of the cell populations playing a role in liver fibrogenesis. In the present work, we aimed to elucidate a possible interaction between PDGF receptor (PDGFR) and IGF-I receptor (IGF-IR) signaling in LMFs. Among different rat liver cells, PDGFR alpha- and beta-subunits were mainly expressed in hepatic stellate cells and LMFs, and were upregulated during their in vitro cultivation. In LMFs, PDGF-BB (10 ng/ml) stimulated DNA synthesis approximately two-fold and this effect was similar to that of IGF-I. IGF-I and PDGF-BB differentially affected IGF-IR and PDGFR signaling. High concentrations of IGF-I decreased levels of IGF-IR and IRS-1 and inhibited the expression and activation of PDGFRalpha. PDGF-BB prevented IGF-I-induced downregulation of the IGF-IR, but did not affect expression of its cognate receptor subunits. Transphosphorylation of PDGFR and IGF-IR was not observed. PDGF effectively activated terminal MAP kinases, PI3 kinase and Akt kinase, whereas IGF-I demonstrated weaker effects. PLCgamma(1) was phosphorylated only in response to PDGF, but not to IGF-I. In rat LMFs, blockade of the IGF-IR via inhibition of the IGF-IR kinase completely abrogated IGF- and PDGF-induced mitogenesis and the ability of PDGF to phosphorylate PLCgamma(1). In conclusion, the presented data demonstrate that the PDGFR signaling requires a functional IGF-IR and that PDGF-BB stabilizes the IGF-IR function through preventing the IGF-I-induced downregulation of the IGF-IR. These interactions might be relevant in vivo for the fibroproliferative response during liver injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/labinvest.3700426 | DOI Listing |
Transl Psychiatry
January 2025
Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Anxiety disorder, a prevalent mental health issue, is one of the leading causes of disability worldwide. Damage to the blood-brain barrier (BBB) is implicated in anxiety, but its regulatory mechanisms remain unclear. Herein, we show that adrenomedullin 2 (ADM2), a novel angiogenic growth factor, alleviates autistic and anxiety-like behaviors in mice.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany.
Cell death is a critical biological process necessary for development, tissue maintenance, and defense against diseases. To date, more than 20 forms of cell death have been identified, each defined by unique molecular pathways. Understanding these different forms of cell death is essential for investigating the pathogenesis of diseases such as cancer, neurodegenerative disorders, and autoimmune conditions and developing appropriate therapies.
View Article and Find Full Text PDFCurr Mol Med
October 2024
Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm 106 91, Sweden.
NPJ Precis Oncol
October 2024
Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund University and Skåne University Hospital, Barngatan 4, SE-221 85, Lund, Sweden.
There has been a long-standing interest in targeting the type 1 insulin-like growth factor receptor (IGF-1R) signaling system in breast cancer due to its key role in neoplastic proliferation and survival. However, no IGF-1R targeting agent has shown substantial clinical benefit in controlled phase 3 trials, and no biomarker has been shown to have clinical utility in the prediction of benefit from an IGF-1R targeting agent. IGFBP7 is an atypical insulin-like growth factor binding protein as it has a higher affinity for the IGF-1R than IGF ligands.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States of America. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!