A challenging task in the study of the secretory pathway is the identification and localization of new proteins to increase our understanding of the functions of different organelles. Previous proteomic studies of the endomembrane system have been hindered by contaminating proteins, making it impossible to assign proteins to organelles. Here we have used the localization of organelle proteins by the isotope tagging technique in conjunction with isotope tags for relative and absolute quantitation and 2D liquid chromatography for the simultaneous assignment of proteins to multiple subcellular compartments. With this approach, the density gradient distributions of 689 proteins from Arabidopsis thaliana were determined, enabling confident and simultaneous localization of 527 proteins to the endoplasmic reticulum, Golgi apparatus, vacuolar membrane, plasma membrane, or mitochondria and plastids. This parallel analysis of endomembrane components has enabled protein steady-state distributions to be determined. Consequently, genuine organelle residents have been distinguished from contaminating proteins and proteins in transit through the secretory pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1458916PMC
http://dx.doi.org/10.1073/pnas.0506958103DOI Listing

Publication Analysis

Top Keywords

proteins
9
secretory pathway
8
contaminating proteins
8
mapping arabidopsis
4
arabidopsis organelle
4
organelle proteome
4
proteome challenging
4
challenging task
4
task study
4
study secretory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!