Versatile routes toward functional, water-soluble nanoparticles via trifluoroethylester-PEG-thiol ligands.

Langmuir

Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA.

Published: April 2006

This paper reports the synthesis of a trifluoroethylester-PEG-thiol ligand (TFEE-PEG-SH) and its use to create water-soluble, chemically functional Au metal and FePt magnetic nanoparticles. The trifluoroethylester terminus facilitates attachment of any primary-amine-containing molecule via amide bond formation at room temperature without the use of coupling agents. Three possible routes of nanoparticle functionalization are demonstrated: synthesis of Au nanoparticles in the presence of functionalized R-PEG-SH; ligand-exchange of R-PEG-SH onto both Au and FePt nanoparticles; and exchange of TFEE-PEG-SH onto Au nanoparticles followed by subsequent amide condensation. A series of primary-amine-containing molecules, including biotin and fluorescamine, are easily attached to the water-soluble particles, and the resulting materials are characterized by NMR, UV-visible absorption, and emission spectroscopies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la053523zDOI Listing

Publication Analysis

Top Keywords

nanoparticles
5
versatile routes
4
routes functional
4
functional water-soluble
4
water-soluble nanoparticles
4
nanoparticles trifluoroethylester-peg-thiol
4
trifluoroethylester-peg-thiol ligands
4
ligands paper
4
paper reports
4
reports synthesis
4

Similar Publications

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Rare-earth oxide promoted Pd electrocatalyst for formic acid oxidation.

Dalton Trans

January 2025

Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.

The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including ScO, CeO, LaO, and PrO. For example, Pd nanoparticles incorporated with ScO supported on nitrogen-doped reduced graphene oxide (Pd-ScO/N-rGO-, = 1/3, 1/2, 2/3, 1, and 3/2; "" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method.

View Article and Find Full Text PDF

Astaxanthin (ASX), "king of carotenoids", is a xanthophyll carotenoid that is characterized by a distinct reddish-orange hue, procured from diverse sources including plants, microalgae, fungi, yeast, and lichens. It exhibits potent antioxidant and anti-ageing properties and has been demonstrated to mitigate ultraviolet-induced cellular and DNA damage, enhance immune system function, and improve cardiovascular diseases. Despite its broad utilization across nutraceutical, cosmetic, aquaculture, and pharmaceutical sectors, the large-scale production and application of ASX are constrained by the limited availability of natural sources, low production yields and stringent production requirements.

View Article and Find Full Text PDF

Detecting β-lactoglobulin (β-Lg) with high sensitivity and selectivity is an urgent requirement due to nearly 80% of milk anaphylaxis, such as respiratory tract, skin urticaria, and gastrointestinal disorders, being caused by β-Lg. An ultrasensitive β-Lg electrochemical aptasensor utilizing core-satellite gold nanoparticle@silver nanocluster (AuNPs@AgNCs) nanohybrids as electrocatalysts was developed. First, β-Lg aptamer was anchored on gold electrodes and AuNPs to obtain high selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!