Rheometry-PIV of shear-thickening wormlike micelles.

Langmuir

Laboratorio de Reología, Escuela Superior de Física y Matematicas, Instituto Politécnico Nacional, Apdo. Postal 118-209, C. P. 07051, México D. F. México.

Published: April 2006

The shear-thickening behavior of an equimolar semidilute aqueous solution of 40 mM/L cetylpyridinium chloride and sodium salicylate was studied in this work by using a combined method of rheometry and particle image velocimetry (PIV). Experiments were conducted at 27.5 degrees C with Couette, vane-bob, and capillary rheometers in order to explore a wide shear stress range as well as the effect of boundary conditions and time of flow on the creation and destruction of shear-induced structures (SIS). The use of the combined method of capillary rheometry with PIV allowed the detection of fast spatial and temporal variations in the flow kinematics, which are related to the shear-thickening behavior and the dynamics of the SIS but are not distinguished by pure rheometrical measurements. A rich-in-details flow curve was found for this solution, which includes five different regimes. Namely, at very low shear rates a Newtonian behavior was found, followed by a shear thinning one in the second regime. In the third, shear banding was observed, which served as a precursor of the SIS and shear-thickening. The fourth and fifth regimes in the flow curve were separated by a spurtlike behavior, and they clearly evidenced the existence of shear-thickening accompanied by stick-slip oscillations at the wall of the rheometer, which subsequently produced variations in the shear rate under shear stress controlled flow. Such a stick-slip phenomenon prevailed up to the highest shear stresses used in this work and was reflected in asymmetric velocity profiles with spatial and temporal variations linked to the dynamics of creation and breakage of the SIS. The presence of apparent slip at the wall of the rheometer provides an energy release mechanism which leads to breakage of the SIS, followed by their further reformation during the stick part of the cycles. In addition, PIV measurements allowed the detection of apparent slip at the wall, as well as mechanical failures in the bulk of the fluid, which suggests an extra contribution of the shear stress field to the SIS dynamics. Increasing the residence time of the fluid in the flow system enhanced the shear-thickening behavior. Finally, the flow kinematics is described in detail and the true flow curve is obtained, which only partially fits into the scheme of existing theoretical models for shear-thickening solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la053167kDOI Listing

Publication Analysis

Top Keywords

shear-thickening behavior
12
shear stress
12
flow curve
12
combined method
8
shear
8
flow
8
allowed detection
8
spatial temporal
8
temporal variations
8
flow kinematics
8

Similar Publications

3D polycatenated architected materials.

Science

January 2025

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA.

Architected materials derive their properties from the geometric arrangement of their internal structural elements. Their designs rely on continuous networks of members to control the global mechanical behavior of the bulk. In this study, we introduce a class of materials that consist of discrete concatenated rings or cage particles interlocked in three-dimensional networks, forming polycatenated architected materials (PAMs).

View Article and Find Full Text PDF

A simple model of the rheological curve of HPAM solutions at different temperatures.

Sci Rep

December 2024

Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires/CONICET, Paseo Colón 850 CABA, Buenos Aires, Argentina.

Article Synopsis
  • The oil and gas industry is grappling with climate change and resource depletion, prompting a shift towards enhanced recovery methods like polymer flooding, which boasts higher recovery rates and lower emissions.
  • Existing physical models for predicting polymer flooding outcomes need improvement, particularly in accurately modeling the flow behavior of polymer solutions.
  • The new PAMA-T model expands the original PAMA technique to make it applicable across a wider temperature range (298-343 K), enabling better predictions of rheological properties using minimal data input from viscosity measurements.
View Article and Find Full Text PDF

Concentrated suspensions of Brownian and non-Brownian particles display distinctive rheological behavior highly dependent on shear rate and shear stress. Cornstarch suspensions, composed of starch particles from corn plants, served as a model for concentrated non-Brownian suspensions, demonstrating discontinuous shear thickening (DST) and dynamic shear jamming (SJ). However, starch particles from other plant sources have not yet been investigated, despite their different sizes and shapes.

View Article and Find Full Text PDF

Ordos, China has a large amount of environmentally hazardous Pisha sandstone and desert sand. Pisha sandstone ceramic sand and desert sand can be compounded to prepare light and fine aggregates, which are often used in construction mortar. However, it is unknown how the density and particle shapes of light and fine aggregates affect their rheological properties.

View Article and Find Full Text PDF

Effect of the Ratio of Protein to Water on the Weak Gel Nonlinear Viscoelastic Behavior of Fish Myofibrillar Protein Paste from Alaska Pollock.

Gels

November 2024

Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.

The linear and nonlinear rheological behaviors of fish myofibrillar protein (FMP) paste with 75%, 82%, and 90% moisture content were evaluated using small-amplitude oscillatory shear (SAOS) and large-amplitude oscillatory shear (LAOS) tests. SAOS revealed pastes with 75% and 82% moisture exhibited solid-like behavior, characterized by higher storage modulus (G') than loss modulus (G″), indicative of weak gel properties with a strong protein interaction. In contrast, the 90% moisture content showed more viscous behavior due to weakened protein-protein entanglements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!