AI Article Synopsis

Article Abstract

Terminase enzymes are common to both prokaryotic and eukaryotic double-stranded DNA viruses and are responsible for packaging viral DNA into the confines of an empty procapsid shell. In all known cases, the holoenzymes are heteroligomers composed of a large subunit that possesses the catalytic activities required for genome packaging and a small subunit that is responsible for specific recognition of viral DNA. In bacteriophage lambda, the DNA recognition protein is gpNu1. The gpNu1 subunit interacts with multiple recognition elements within cos, the packaging initiation site in viral DNA, to site-specifically assemble the packaging machinery. Motor assembly is modulated by the Escherichia coli integration host factor protein (IHF), which binds to a consensus sequence also located within cos. On the basis of a variety of biochemical data and the recently solved NMR structure of the DNA binding domain of gpNu1, we proposed a novel DNA binding mode that predicts significant bending of duplex DNA by gpNu1 (de Beer et al. (2002) Mol. Cell 9, 981-991). We further proposed that gpNu1 and IHF cooperatively bind and bend viral DNA to regulate the assembly of the packaging motor. Here, we characterize cooperative gpNu1 and IHF binding to the cos site in lambda DNA using a quantitative electrophoretic mobility shift (EMS) assay. These studies provide direct experimental support for the long presumed cooperative assembly of gpNu1 and IHF at the cos sequence of lambda DNA. Further, circular permutation experiments demonstrate that the viral and host proteins each introduce a strong bend in cos-containing DNA, but not nonspecific DNA substrates. Thus, specific recognition of viral DNA by the packaging apparatus is mediated by both DNA sequence information and by structural alteration of the duplex. The relevance of these results with respect to the assembly of a viral DNA-packaging motor is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi052284bDOI Listing

Publication Analysis

Top Keywords

viral dna
24
dna
16
lambda dna
12
gpnu1 ihf
12
bacteriophage lambda
8
gpnu1
8
escherichia coli
8
cooperatively bind
8
bind bend
8
viral
8

Similar Publications

Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood.

View Article and Find Full Text PDF

Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.

View Article and Find Full Text PDF

Developing human papillomavirus (HPV) therapeutic DNA vaccines requires an effective delivery system, such as cell-penetrating peptides (CPPs). In the current study, the multiepitope DNA constructs harboring the immunogenic and conserved epitopes of the L1, L2, and E7 proteins of HPV16/18 (pcDNA-L1-L2-E7 and pEGFP-L1-L2-E7) were delivered using KALA and REV CPPs with different properties in vitro and in vivo. Herein, after confirmation of the REV/DNA and KALA/DNA complexes, their stability was investigated against DNase I and serum protease.

View Article and Find Full Text PDF

Advancing the Fight Against Cervical Cancer: The Promise of Therapeutic HPV Vaccines.

Vaccines (Basel)

January 2025

Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing 400030, China.

Human papillomavirus (HPV) is a major global health issue and is recognized as the leading cause of cervical cancer. While prophylactic vaccination programs have led to substantial reductions in both HPV infection rates and cervical cancer incidence, considerable burdens of HPV-related diseases persist, particularly in developing countries with inadequate vaccine coverage and uptake. The development of therapeutic vaccines for HPV represents an emerging strategy that has the potential to bolster the fight against cervical cancer.

View Article and Find Full Text PDF

Immunogenicity of HIV-1 mRNA and VLP mRNA Vaccines in Mice.

Vaccines (Basel)

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.

Background: The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic.

Methods: We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env-gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA vaccines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!