A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Proposal for a hydrogen bond network in the active site of the prototypic gamma-class carbonic anhydrase. | LitMetric

Proposal for a hydrogen bond network in the active site of the prototypic gamma-class carbonic anhydrase.

Biochemistry

Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA.

Published: April 2006

The crystal structure of Cam, the prototypic gamma-class carbonic anhydrase, reveals active site residues Gln75, Asn73, and Asn 202 previously hypothesized to participate in catalysis. These potential roles were investigated for the first time by kinetic analyses of site-specific replacement variants of the zinc and cobalt forms of Cam. Gln75 replacement variants showed large decreases in k(cat)/K(m) relative to wild-type. Further, the Gln75 variants showed a loss of the pK(a) in pH versus k(cat)/K(m) profiles previously attributed to ionization of the metal-bound water yielding the hydroxyl group attacking CO(2). These results support the previously proposed role for Gln75 in hydrogen bonding with the catalytic hydroxyl orienting it for attack on CO(2). Kinetic analyses of Asn73 variants were consistent with a role in hydrogen bonding with Gln75 to position it for optimal interaction with the catalytic hydroxyl. Kinetic analyses of Asn202 variants showed substantial decreases in k(cat)/K(m) relative to the wild-type enzyme supporting the previously hypothesized role in polarizing CO(2) and facilitating attack from the metal-bound hydroxyl. On the basis of results presented here, and previously reported structural analyses, we present a catalytic mechanism involving Gln75, Asn73, and Asn202 that also suggests a role for Glu62 not previously recognized. Finally, the results suggest that the gamma-, beta-, and alpha-class carbonic anhydrases each independently evolved variations of a fundamental hydrogen bond network essential for catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi052507yDOI Listing

Publication Analysis

Top Keywords

kinetic analyses
12
hydrogen bond
8
bond network
8
active site
8
prototypic gamma-class
8
gamma-class carbonic
8
carbonic anhydrase
8
gln75 asn73
8
replacement variants
8
decreases kcat/km
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!