The objective of these two experiments was to determine the role of thermal cues in material discrimination and localization, using materials that spanned a range of thermal properties. In the first experiment, the subjects were required to select the cooler of two materials presented to the index fingers. In the second, the finger that was in contact with a material that was different from that presented to the other two fingers on the same hand had to be identified. The results indicated that the subjects were able to discriminate between materials, using thermal cues, when the differences in their thermal properties were large. The changes in skin temperature when the fingers were touching the materials were, however, smaller than those predicted by the theoretical model. The ability to localize the thermal changes when three fingers on the same hand were stimulated was poor and depended on both the thermal properties of the target and the distractor materials.

Download full-text PDF

Source
http://dx.doi.org/10.3758/bf03193662DOI Listing

Publication Analysis

Top Keywords

thermal cues
12
thermal properties
12
cues material
8
material discrimination
8
discrimination localization
8
presented fingers
8
fingers hand
8
thermal
6
materials
5
contribution thermal
4

Similar Publications

Chemical signatures of social information in Barbary macaques.

Sci Rep

January 2025

Behavioural Ecology Group, Institute of Biology, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.

Primates are well-known for their complex social lives and intricate social relationships, which requires them to obtain and update social knowledge about conspecifics. The sense of smell may provide access to social information that is unavailable in other sensory domains or enhance the precision and reliability of other sensory cues. However, the cognition of social information in catarrhine primates has been studied primarily in the visual and auditory domain.

View Article and Find Full Text PDF

Oral cell lysates reduce osteoclastogenesis in murine bone marrow cultures.

Cytotechnology

February 2025

Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.

Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.

View Article and Find Full Text PDF

Safety learning during threat and adversity is critical for behavioral adaptation, resiliency, and survival. Using a novel mouse paradigm involving thermal threat, we recently demonstrated that safety learning is highly susceptible to social isolation stress. Yet, our previous study primarily considered male mice and did not thoroughly scrutinize the relative impacts of stress on potentially distinct defensive mechanisms implemented by males and females during the thermal safety task.

View Article and Find Full Text PDF

Photoperiod and temperature are two of the most powerful environmental cues that entrain circadian clocks. Being ectothermic, fish must keep their body temperature within a physiological range to optimize biological processes mainly applying behavioral strategies. Here, we developed a low-cost, automated system that allows to create a horizontal multiple-step thermal gradient and video record fish behavior for long-term periods.

View Article and Find Full Text PDF

Functionalization of 3D printed poly(lactic acid)/graphene oxide/β-tricalcium phosphate (PLA/GO/TCP) scaffolds for bone tissue regeneration application.

RSC Adv

December 2024

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México UNAM Av. Universidad, C.U. Coyoacán 04510 Ciudad de México Mexico.

The challenge of bone tissue regeneration implies the use of new advanced technologies for the manufacture of polymeric matrices, with 3D printing technology being a suitable option for tissue engineering due to its low processing cost, its simple operation and the wide use of biomaterials in biomedicine. Among the biopolymers used to obtain porous scaffolds, poly(lactic acid) (PLA) stands out due its mechanical and biodegradability properties, although its low bioactivity to promote bone regeneration is a great challenge. In this research, a 3D scaffold based on PLA reinforced with bioceramics such as graphene oxide (GO) and β-tricalcium phosphate (TCP) was designed and characterized by FTIR, XRD, DSC, SEM and mechanical tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!