There is minimal information in the literature regarding the tectorial membrane. Further, information in the literature regarding the anatomy and function of this structure is often contradictory. We performed the current study to elucidate further this structure's detailed anatomy, function, and histology. Thirteen adult cadavers underwent dissection of their tectorial membranes and detailed observations and measurements were made of them. Ranges of motion of the craniocervical junction were performed before and after transection of this structure. Histological analysis was performed on all membranes. The tectorial membrane was found to attach much more superiorly than previously described and was found to be firmly adherent to the cranial base and body of the axis but not to the posterior aspect of the odontoid process. The mean thickness of this membrane was found to be 1 mm. Flexion of the head made the tectorial membrane fully taut at 15 degrees and extension made it fully taut at 20 degrees; however, there was a buckling effect (redundant tectorial membrane) noted at the level of the odontoid process in extension. With the alar and transverse ligaments cut and with flexion of the head, the middle portion of this membrane was stretched over the odontoid process, thus acting as a "hammock" that inhibited the odontoid process from moving posteriorly. The tectorial membrane did not limit cervical flexion per se but rather helped to insure that the odontoid process did not impinge into the cervical canal. Lateral flexion was not found to be limited by this structure. Histologically, parallel collagen fibers with spindle-shaped fibrocytes were observed within this membrane and near its attachment to the posterior axis, the collagen fibers were noted to be more homogenous with larger non-spindled fibrocytes. At the cranial attachment of the tectorial membrane, multiple calcified areas were noted that interdigitated with the underlying bone. Also near this cephalic bony attachment, there was an increase in the number of elastic fibers, which were found running parallel with the surrounding Type III collagen fibers. The tectorial membrane was found to attach much more superiorly than previously described. We would propose that the tectorial membrane provides for a second line of defense, preventing the odontoid process from compressing the spinal cord and by doing so, secondarily limits movement of the craniocervical juncture. This hypothesis is strengthened by the finding of many elastic fibers in the tectorial membrane. To our knowledge, our study is the first to perform a detailed histological analysis of the tectorial membrane. We hope that these data are useful to the clinician who investigates this ligament of the craniocervical region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ca.20334 | DOI Listing |
J Orthop Case Rep
December 2024
Department of Spine Surgery, Children Hospital Westmead, Sydney, Australia.
Introduction: Death is the most common outcome of longitudinal atlanto-occipital dissociation (L-AOD). Even though rare, survival is commonly seen in the pediatric population. This study reports a successful outcome of a pediatric patient with an L-AOD without neurodeficits, immobilized in a visor (head-neck-chest) orthosis.
View Article and Find Full Text PDFDev Cell
December 2024
Department of Neurobiology, University of Utah, Salt Lake City, UT, USA. Electronic address:
The apical extracellular matrix (aECM), organized by polarized epithelial cells, exhibits complex structures. The tectorial membrane (TM), an aECM in the cochlea mediating auditory transduction, exhibits highly ordered domain-specific architecture. α-Tectorin (TECTA), a glycosylphosphatidylinositol (GPI)-anchored ECM protein, is essential for TM organization.
View Article and Find Full Text PDFJ Comp Neurol
December 2024
School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
A gene cadre orchestrates the normal development of sensory and non-sensory cells in the inner ear, segregating the cochlea with a distinct tonotopic sound frequency map, similar brain projection, and five vestibular end-organs. However, the role of genes driving the ear development is largely unknown. Here, we show double deletion of the Iroquois homeobox 3 and 5 transcription factors (Irx3/5 DKO) leads to the fusion of the saccule and the cochlear base.
View Article and Find Full Text PDFAnn Biomed Eng
December 2024
School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA.
Biogerontology
November 2024
Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin 2nd Road, Shanghai, 200025, China.
Age-related hearing loss (ARHL) is a common disease among the elderly. Although its pathogenesis remains unclear by now, it is widely accepted that ARHL is associated with the degenerative alterations within each component of the cochlea. Extracellular matrix (ECM) plays a crucial role in cochlear structure and function, providing not only structural support but also participating in vital physiological processes including the development, differentiation, survival of auditory sensory cells, and sound perception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!