Prions adhere to soil minerals and remain infectious.

PLoS Pathog

Program in Cellular and Molecular Biology, University of Wisconsin Madison, Madison, Wisconsin, United States of America.

Published: April 2006

An unidentified environmental reservoir of infectivity contributes to the natural transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) in sheep, deer, and elk. Prion infectivity may enter soil environments via shedding from diseased animals and decomposition of infected carcasses. Burial of TSE-infected cattle, sheep, and deer as a means of disposal has resulted in unintentional introduction of prions into subsurface environments. We examined the potential for soil to serve as a TSE reservoir by studying the interaction of the disease-associated prion protein (PrP(Sc)) with common soil minerals. In this study, we demonstrated substantial PrP(Sc) adsorption to two clay minerals, quartz, and four whole soil samples. We quantified the PrP(Sc)-binding capacities of each mineral. Furthermore, we observed that PrP(Sc) desorbed from montmorillonite clay was cleaved at an N-terminal site and the interaction between PrP(Sc) and Mte was strong, making desorption of the protein difficult. Despite cleavage and avid binding, PrP(Sc) bound to Mte remained infectious. Results from our study suggest that PrP(Sc) released into soil environments may be preserved in a bioavailable form, perpetuating prion disease epizootics and exposing other species to the infectious agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1435987PMC
http://dx.doi.org/10.1371/journal.ppat.0020032DOI Listing

Publication Analysis

Top Keywords

soil minerals
8
sheep deer
8
soil environments
8
soil
6
prpsc
6
prions adhere
4
adhere soil
4
minerals remain
4
remain infectious
4
infectious unidentified
4

Similar Publications

Coal gangue (CG) is an industrial solid waste produced by coal mining and separation that is considered to have a significant effect on the soil or water environment when exposed to the air, exacerbating ecological pollution. The comprehensive utilization of CG has always been a difficult problem due to the complex mineralogical characteristics. Producing concrete aggregates with CG is an effective strategy for utilising CG resources synthetically.

View Article and Find Full Text PDF

Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services.

Environ Sci Pollut Res Int

December 2024

Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.

Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented.

View Article and Find Full Text PDF

Sugarcane is a major industrial crop highly susceptible to parasitic weed (Striga spp.), causing a 38% reduction in cane yield due to a longer lag phase of 20-40 days, and wider spacing. Herbicides with a longer retention and slow-release nature could allow Striga seeds to germinate and be killed before attaching to the host.

View Article and Find Full Text PDF

[Effect of enhanced silicate minerals weathering on carbon sequestration by plant-soil systems in rice fields].

Ying Yong Sheng Tai Xue Bao

October 2024

CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.

Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.

View Article and Find Full Text PDF

Anthropogenic nitrogen (N) deposition is unequally distributed across space and time, with inputs to terrestrial ecosystems impacted by industry regulations and variations in human activity. Soil carbon (C) content normally controls the fraction of mineralized N that is nitrified (ƒ), affecting N bioavailability for plants and microbes. However, it is unknown whether N deposition has modified the relationships among soil C, net N mineralization, and net nitrification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!